Deep neural networks for accurate predictions of crystal stability

被引:223
作者
Ye, Weike [1 ]
Chen, Chi [2 ]
Wang, Zhenbin [2 ]
Chu, Iek-Heng [2 ]
Ong, Shyue Ping [2 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr,Mail Code 0303, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr,Mail Code 0448, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
THERMODYNAMIC STABILITY; PEROVSKITE OXIDES; APPROXIMATION; ENERGY;
D O I
10.1038/s41467-018-06322-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting the stability of crystals is one of the central problems in materials science. Today, density functional theory (DFT) calculations remain comparatively expensive and scale poorly with system size. Here we show that deep neural networks utilizing just two descriptors-the Pauling electronegativity and ionic radii-can predict the DFT formation energies of C(3)A(2)D(3)O(12) garnets and ABO(3) perovskites with low mean absolute errors (MAEs) of 7-10 meV atom(-1) and 20-34 meV atom(-1), respectively, well within the limits of DFT accuracy. Further extension to mixed garnets and perovskites with little loss in accuracy can be achieved using a binary encoding scheme, addressing a critical gap in the extension of machine-learning models from fixed stoichiometry crystals to infinite universe of mixed-species crystals. Finally, we demonstrate the potential of these models to rapidly transverse vast chemical spaces to accurately identify stable compositions, accelerating the discovery of novel materials with potentially superior properties.
引用
收藏
页数:6
相关论文
共 40 条
[1]  
Abadi M., 2016, TENSORFLOW LARGESCAL
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   BULK SUPERCONDUCTIVITY AT 91-K IN SINGLE-PHASE OXYGEN-DEFICIENT PEROVSKITE BA2YCU3O9-DELTA [J].
CAVA, RJ ;
BATLOGG, B ;
VANDOVER, RB ;
MURPHY, DW ;
SUNSHINE, S ;
SIEGRIST, T ;
REMEIKA, JP ;
RIETMAN, EA ;
ZAHURAK, S ;
ESPINOSA, GP .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1676-1679
[4]  
Chollet F., 2015, about us
[5]   ORIGIN OF FERROELECTRICITY IN PEROVSKITE OXIDES [J].
COHEN, RE .
NATURE, 1992, 358 (6382) :136-138
[6]   Machine Learning Energies of 2 Million Elpasolite (ABC2D6) Crystals [J].
Faber, Felix A. ;
Lindmaa, Alexander ;
von Lilienfeld, O. Anatole ;
Armiento, Rickard .
PHYSICAL REVIEW LETTERS, 2016, 117 (13)
[7]   The laws of crystal chemistry [J].
Goldschmidt, VM .
NATURWISSENSCHAFTEN, 1926, 14 :477-485
[8]  
Granat-struktur D., 1999, Z KRIST-CRYST MATER, V47, P1989
[9]  
Green MA, 2014, NAT PHOTONICS, V8, P506, DOI [10.1038/NPHOTON.2014.134, 10.1038/nphoton.2014.134]
[10]   Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials [J].
Grinberg, Ilya ;
West, D. Vincent ;
Torres, Maria ;
Gou, Gaoyang ;
Stein, David M. ;
Wu, Liyan ;
Chen, Guannan ;
Gallo, Eric M. ;
Akbashev, Andrew R. ;
Davies, Peter K. ;
Spanier, Jonathan E. ;
Rappe, Andrew M. .
NATURE, 2013, 503 (7477) :509-+