Increasing Accessible Subsurface to Improving Rate Capability and Cycling Stability of Sodium-Ion Batteries

被引:171
作者
Yin, Bo [1 ,2 ]
Liang, Shuquan [1 ]
Yu, Dongdong [2 ]
Cheng, Boshi [2 ]
Egun, Ishioma L. [2 ]
Lin, Jiande [1 ]
Xie, Xuefang [1 ]
Shao, Hezhu [3 ]
He, Haiyong [2 ]
Pan, Anqiang [1 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[3] Wenzhou Univ, Coll Elect Elect Engn, Wenzhou Key Lab Micronano Optoelect Devices, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金;
关键词
3D porous carbon frameworks; doping carbon; pseudocapacitive capacity; rate capability; sodium-ion batteries; subsurface; POROUS CARBON NANOSHEETS; ANODE MATERIAL; NITROGEN; NANOTUBES; STORAGE;
D O I
10.1002/adma.202100808
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Numerous studies have reported that the enhancement of rate capability of carbonaceous anode by heteroatom doping is due to the increased diffusion-controlled capacity induced by expanding interlayer spacing. However, percentage of diffusion-controlled capacity is less than 30% as scan rate is larger than 1 mV s(-1), suggesting there is inaccuracy in recognizing principle of improving rate capability of carbonaceous anode. In this paper, it is found that the heteroatom doping has little impact on interlayer spacing of carbon in bulk phase, meaning that diffusion-controlled capacity is hard to be enhanced by doping. After synergizing with tensile stress, however, the interlayer spacing in subsurface region is obviously expanded to 0.40 nm, which will increase the thickness of accessible subsurface region at high current density. So SRNDC-700 electrodes display a high specific capacity of 160.6 and 69.5 mAh g(-1) at 20 and 50 A g(-1), respectively. Additionally, the high reversibility of carbon structure insures ultralong cycling stability and hence attenuation of SRNDC-700 is only 0.0025% per cycle even at 10 A g(-1) for 6000 cycles. This report sheds new insight into mechanism of improving electrochemical performance of carbonaceous anode by doping and provides a novel design concept for doping carbon.
引用
收藏
页数:11
相关论文
共 58 条
  • [1] Pseudocapacitive oxide materials for high-rate electrochemical energy storage
    Augustyn, Veronica
    Simon, Patrice
    Dunn, Bruce
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1597 - 1614
  • [2] Chemical Synthesis of 3D Graphene-Like Cages for Sodium-Ion Batteries Applications
    Cao, Xinxin
    Pan, Anqiang
    Liu, Sainan
    Zhou, Jiang
    Li, Site
    Cao, Guozhong
    Liu, Jun
    Liang, Shuquan
    [J]. ADVANCED ENERGY MATERIALS, 2017, 7 (20)
  • [3] Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications
    Cao, Yuliang
    Xiao, Lifen
    Sushko, Maria L.
    Wang, Wei
    Schwenzer, Birgit
    Xiao, Jie
    Nie, Zimin
    Saraf, Laxmikant V.
    Yang, Zhengguo
    Liu, Jun
    [J]. NANO LETTERS, 2012, 12 (07) : 3783 - 3787
  • [4] Raman Spectroscopy of Graphene Edges
    Casiraghi, C.
    Hartschuh, A.
    Qian, H.
    Piscanec, S.
    Georgi, C.
    Fasoli, A.
    Novoselov, K. S.
    Basko, D. M.
    Ferrari, A. C.
    [J]. NANO LETTERS, 2009, 9 (04) : 1433 - 1441
  • [5] Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays
    Chao, Dongliang
    Liang, Pei
    Chen, Zhen
    Bai, Linyi
    Shen, He
    Liu, Xiaoxu
    Xia, Xinhui
    Zhao, Yanli
    Savilov, Serguei V.
    Lin, Jianyi
    Shen, Ze Xiang
    [J]. ACS NANO, 2016, 10 (11) : 10211 - 10219
  • [6] Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry
    Dou, Xinwei
    Hasa, Ivana
    Saurel, Damien
    Vaalma, Christoph
    Wu, Liming
    Buchholz, Daniel
    Bresser, Dominic
    Komaba, Shinichi
    Passerini, Stefano
    [J]. MATERIALS TODAY, 2019, 23 : 87 - 104
  • [7] Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon
    Gaddam, Rohit Ranganathan
    Niaei, Amir H. Farokh
    Hankel, Marlies
    Searles, Debra J.
    Kumar, Nanjundan Ashok
    Zhao, X. S.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (42) : 22186 - 22192
  • [8] A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
    Grimme, Stefan
    Antony, Jens
    Ehrlich, Stephan
    Krieg, Helge
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
  • [9] Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries
    Hou, Hongshuai
    Shao, Lidong
    Zhang, Yan
    Zou, Guoqiang
    Chen, Jun
    Ji, Xiaobo
    [J]. ADVANCED SCIENCE, 2017, 4 (01):
  • [10] Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life
    Hou, Hongshuai
    Banks, Craig E.
    Jing, Mingjun
    Zhang, Yan
    Ji, Xiaobo
    [J]. ADVANCED MATERIALS, 2015, 27 (47) : 7861 - 7866