A Polynomial Estimation of Measurand Parameters for Samples of Non-Gaussian Symmetrically Distributed Data

被引:8
|
作者
Warsza, Zygmunt L. [1 ]
Zabolotnii, Serhii W. [2 ]
机构
[1] Ind Res Inst Automat & Measurements PIAP, Al Jerozolimskie 202, PL-02486 Warsaw, Poland
[2] Cherkasy State Technol Univ, Cherkassy, Ukraine
关键词
Estimator; Non-Gaussian model; Stochastic polynomial; Mean value; Variance; Cumulant coefficients;
D O I
10.1007/978-3-319-54042-9_45
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The non-standard method for evaluating of the average and standard deviation of the symmetrically non-Gaussian-distributed data of sample with a priori partial description (unknown PDF) is proposed. This method of statistical estimation is based on the apparatus of stochastic polynomials and uses the higherorder statistics (moment & cumulant description) of random variables. The analytical expressions for finding estimates for the degree of the polynomial s = 3 and their accuracy analyzes are given. It is shown that the uncertainty estimates received for polynomial are generally less than the uncertainty estimates obtained based on the mean (arithmetic average). Reduction factor, which depends on the MSE values of higher order cumulant coefficients, characterizes the degree of the sampling distribution differences from the Gaussian model. The results of statistical modeling, based on the Monte Carlo method, confirmed the effectiveness of the proposed approach are presented.
引用
收藏
页码:468 / 480
页数:13
相关论文
共 50 条
  • [31] An optimisation approach to robust estimation of multicomponent polynomial phase signals in non-Gaussian noise
    Pham, Duc Son
    Leung, Yee Hong
    Teo, Kok Lay
    Zoubir, Abdelhak
    2006 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, 2006, : 832 - +
  • [32] Statistical inference of multivariate distribution parameters for non-Gaussian distributed time series
    Repetowicz, P
    Richmond, P
    ACTA PHYSICA POLONICA B, 2005, 36 (09): : 2785 - 2796
  • [33] Non-Gaussian models for CoVaR estimation
    Bianchi, Michele Leonardo
    De Luca, Giovanni
    Rivieccio, Giorgia
    INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (01) : 391 - 404
  • [34] Gaussian State Estimation with Non-Gaussian Measurement Noise
    Tollkuehn, Andreas
    Particke, Florian
    Thielecke, Joern
    2018 SYMPOSIUM ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2018,
  • [35] Polynomial filtering for stochastic non-Gaussian descriptor systems
    Germani, A
    Manes, C
    Palumbo, P
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (08) : 1561 - 1576
  • [36] Polynomial filtering for stochastic non-Gaussian descriptor systems
    Germani, A
    Manes, C
    Palumbo, P
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2088 - 2093
  • [37] The polynomial approach to the LQ non-Gaussian regulator problem
    Germani, A
    Mavelli, G
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (08) : 1385 - 1391
  • [38] Non-Gaussian simulation using Hermite polynomial expansion
    Puig, Benedicte
    Poirion, Fabrice
    Soize, Christian
    COMPUTATIONAL STOCHASTIC MECHANICS, 2003, : 487 - 496
  • [39] Nonlinear Estimation of Signal Parameters under the Influence of Narrowband Non-Gaussian Noise
    V. M. Artyushenko
    V. I. Volovach
    Optoelectronics, Instrumentation and Data Processing, 2019, 55 : 66 - 73
  • [40] Nonlinear Estimation of Signal Parameters under the Influence of Narrowband Non-Gaussian Noise
    Artyushenko, V. M.
    Volovach, V. I.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2019, 55 (01) : 66 - 73