A Polynomial Estimation of Measurand Parameters for Samples of Non-Gaussian Symmetrically Distributed Data

被引:8
|
作者
Warsza, Zygmunt L. [1 ]
Zabolotnii, Serhii W. [2 ]
机构
[1] Ind Res Inst Automat & Measurements PIAP, Al Jerozolimskie 202, PL-02486 Warsaw, Poland
[2] Cherkasy State Technol Univ, Cherkassy, Ukraine
关键词
Estimator; Non-Gaussian model; Stochastic polynomial; Mean value; Variance; Cumulant coefficients;
D O I
10.1007/978-3-319-54042-9_45
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The non-standard method for evaluating of the average and standard deviation of the symmetrically non-Gaussian-distributed data of sample with a priori partial description (unknown PDF) is proposed. This method of statistical estimation is based on the apparatus of stochastic polynomials and uses the higherorder statistics (moment & cumulant description) of random variables. The analytical expressions for finding estimates for the degree of the polynomial s = 3 and their accuracy analyzes are given. It is shown that the uncertainty estimates received for polynomial are generally less than the uncertainty estimates obtained based on the mean (arithmetic average). Reduction factor, which depends on the MSE values of higher order cumulant coefficients, characterizes the degree of the sampling distribution differences from the Gaussian model. The results of statistical modeling, based on the Monte Carlo method, confirmed the effectiveness of the proposed approach are presented.
引用
收藏
页码:468 / 480
页数:13
相关论文
共 50 条
  • [1] Polynomial estimation of the measurand parameters for samples from non-Gaussian distributions based on higher order statistics
    Warsza, Zygmunt Lech
    Zabolotnii, Sergiej, V
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING XI, 2019, 89 : 383 - 400
  • [2] Estimators of the measurand value of non-Gaussian probability distributions of data
    Warsza, Zygmunt Lech
    Galovska, Maryna
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (12): : 253 - 258
  • [3] Parameters estimation of correlated non-Gaussian processes by the method of polynomial maximisation
    Vokorokos, Liberios
    Ivchenko, Alexander
    Marchevsky, Stanislav
    Palahina, Elena
    Palahin, Volodymyr
    IET SIGNAL PROCESSING, 2017, 11 (03) : 313 - 319
  • [4] Estimation of Linear Regression Parameters of Symmetric Non-Gaussian Errors by Polynomial Maximization Method
    Zabolotnii, Serhii W.
    Warsza, Zygmunt L.
    Tkachenko, Oleksandr
    AUTOMATION 2019: PROGRESS IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES, 2020, 920 : 636 - 649
  • [5] Estimation of Measurand Parameters for Data from Asymmetric Distributions by Polynomial Maximization Method
    Warsza, Zygmunt Lech
    Zabolotnii, Serhii
    AUTOMATION 2018: ADVANCES IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES, 2018, 743 : 746 - 757
  • [6] Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian Noise
    Li, Ta-Hsin
    Song, Kai-Sheng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) : 62 - 72
  • [7] Estimation of weak signal parameters in non-Gaussian noise
    Cherdyntsev, V
    Doroshevich, M
    SIGNAL ANALYSIS & PREDICTION I, 1997, : 87 - 90
  • [8] EFFICIENT ESTIMATION OF PARAMETERS FOR NON-GAUSSIAN AUTOREGRESSIVE PROCESSES
    SENGUPTA, D
    KAY, S
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (06): : 785 - 794
  • [9] OPTIMAL ESTIMATION OF SIGNAL PARAMETERS WITH NON-GAUSSIAN NOISE
    VALEYEV, VG
    ENGINEERING CYBERNETICS, 1971, 9 (02): : 324 - &
  • [10] OPTIMUM ESTIMATION OF SIGNAL PARAMETERS IN NON-GAUSSIAN NOISE
    SHEEHY, JJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1978, 64 (06): : 1602 - 1612