On Bernstein's inequality for ultraspherical polynomials

被引:3
作者
Alzer, H
机构
[1] D-51545 Waldbröl
关键词
Ultraspherical Polynomial;
D O I
10.1007/s000130050150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following inequality for the ultraspherical polynomials P-n((lambda)): (*) (sin(Theta))(lambda)\P-n((lambda))(cos(Theta))\<2(1-lambda) Gamma(n+3/2 lambda)/Gamma(lambda)Gamma(n+1+1/2 lambda), where 0 < lambda < 1,n greater than or equal to 0, and 0 < Theta < pi. Inequality (*) refines results given by S. Bernstein, L. Lorch, and A. Laforgia.
引用
收藏
页码:487 / 490
页数:4
相关论文
共 9 条
[1]   INEQUALITIES FOR ZERO-BALANCED HYPERGEOMETRIC-FUNCTIONS [J].
ANDERSON, GD ;
BARNARD, RW ;
RICHARDS, KC ;
VAMANAMURTHY, MK ;
VUORINEN, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (05) :1713-1723
[2]  
[Anonymous], J MATH
[3]   A BERNSTEIN-TYPE INEQUALITY FOR THE JACOBI POLYNOMIAL [J].
CHOW, YY ;
GATTESCHI, L ;
WONG, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (03) :703-709
[4]  
GAUTSCHI W., 1959, J. Math. and Phys, V38, P77, DOI [10.1002/sapm195938177, DOI 10.1002/SAPM195938177]
[5]  
LAFORGIA A, 1992, B UNIONE MAT ITAL, V6A, P267
[6]   INEQUALITIES FOR ULTRASPHERICAL POLYNOMIALS AND THE GAMMA FUNCTION [J].
LORCH, L .
JOURNAL OF APPROXIMATION THEORY, 1984, 40 (02) :115-120
[7]  
Milovanovic G.V., 1994, TOPICS POLYNOMIALS E
[8]  
[No title captured]
[9]  
[No title captured]