Stability properties of periodic traveling waves for the intermediate long wave equation

被引:9
作者
Angulo, Jaime [1 ]
Cardoso, Eleomar, Jr. [2 ]
Natali, Fabio [3 ]
机构
[1] State Univ Sao Paulo, Inst Math & Stat, Sao Paulo, SP, Brazil
[2] Univ Fed Santa Catarina, Blumenau, SC, Brazil
[3] Univ Estadual Maringa, Dept Math, Maringa, PR, Brazil
关键词
Stability; periodic waves; ILW equation; evolution models; SOLITARY WAVES; MODEL-EQUATIONS; INSTABILITY; POSITIVITY; FLUIDS;
D O I
10.4171/rmi/943
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we determine orbital and linear stability of a class of spatially periodic wavetrain solutions with the mean zero property related to the intermediate long wave equation. Our arguments follow recent developments for the study of the stability of periodic traveling waves.
引用
收藏
页码:417 / 448
页数:32
相关论文
共 40 条
[11]   STABILITY AND INSTABILITY OF SOLITARY WAVES OF KORTEWEG-DEVRIES TYPE [J].
BONA, JL ;
SOUGANIDIS, PE ;
STRAUSS, WA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1987, 411 (1841) :395-412
[12]   An Instability Index Theory for Quadratic Pencils and Applications [J].
Bronski, Jared ;
Johnson, Mathew A. ;
Kapitula, Todd .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (02) :521-550
[13]  
Bronski JC, 2011, P ROY SOC EDINB A, V141, P1141, DOI 10.1017/S0308210510001216
[14]   The Modulational Instability for a Generalized Korteweg-de Vries Equation [J].
Bronski, Jared C. ;
Johnson, Mathew A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (02) :357-400
[15]  
Byrd P.F., 1971, Die Grundlehren der mathematischen Wissenschaften, V67
[16]   Orbital stability of periodic traveling-wave solutions for the regularized Schamel equation [J].
de Andrade, Thiago Pinguello ;
Pastor, Ademir .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 317 :43-58
[17]   The Stability Analysis of the Periodic Traveling Wave Solutions of the mKdV Equation [J].
Deconinck, B. ;
Nivala, M. .
STUDIES IN APPLIED MATHEMATICS, 2011, 126 (01) :17-48
[18]   The orbital stability of the cnoidal waves of the Korteweg-de Vries equation [J].
Deconinck, Bernard ;
Kapitula, Todd .
PHYSICS LETTERS A, 2010, 374 (39) :4018-4022
[19]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .2. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 94 (02) :308-348
[20]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197