Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations

被引:51
作者
Cho, NE
Kwon, OS
Srivastava, HM [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South Korea
[3] Kyungsung Univ, Dept Math, Pusan 608736, South Korea
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
analytic functions; meromorphic functions; subordination betwen analytic functionss; starlike functions; convex functions; close-to-convex functions; multiplier transformation; Choi-Saigo-Srivastava operator; meromorphic strongly starlike functions;
D O I
10.1016/j.jmaa.2004.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Making use of a multiplier transformation, which is defined here by means of the Hadamard product (or convolution), the authors introduce some new subclasses of meromorphic functions and investigate their inclusion relationships and argument properties. Some integral-preserving properties in a given sector are also considered. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:505 / 520
页数:16
相关论文
共 24 条
[1]  
Bajpai S.K., 1977, Rev. Roum. Math. Pures Appl, V22, P295
[2]  
BHARATI R, 1990, NEW TRENDS GEOMETRIC, P10
[3]  
BIRKHAUSER, 1984, REV ROUMAINE MATH PU, V29, P567
[4]  
BIRKHAUSER, 1983, BASEL, P339
[5]   Some inclusion properties of a certain family of integral operators [J].
Choi, JH ;
Saigo, M ;
Srivastava, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :432-445
[6]  
EENIGENBERG P, 1981, GEN INEQUALITIES, V3
[7]  
GEOL RM, 1981, GLASNIK MAT SER 3, V17, P19
[8]  
Goodman A. W., 1983, Univalent functions, VI and II
[9]  
Libera R.J., 1961, Michigan Math. J, V8, P167, DOI [10.1307/mmj/1028998568, DOI 10.1307/MMJ/1028998568]
[10]  
Liu J.-L., 2002, J NATUR GEOM, V21, P81