Low temperature growth of carbon nanotubes on tetrahedral amorphous carbon using Fe-Cu catalyst

被引:32
作者
Cartwright, R. [1 ]
Esconjauregui, S. [1 ]
Hardeman, D. [1 ]
Bhardwaj, S. [2 ]
Weatherup, R. [1 ]
Guo, Y. [1 ]
D'Arsie, L. [1 ]
Bayer, B. [1 ]
Kidambi, P. [1 ]
Hofmann, S. [1 ]
Wright, E. [3 ]
Clarke, J. [3 ]
Oakes, D. [3 ]
Cepek, C. [2 ]
Robertson, J. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[2] Lab TASC, Ist Officina Mat, CNR, I-34149 Trieste, Italy
[3] Johnson Matthey Technol Ctr, Sonning Common RG4 9NH, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
IN-SITU; COPPER; IRON; INTERFACE; SOLUBILITY; REACTIVITY; SUBSTRATE; GRAPHENE; SPECTRA; FILMS;
D O I
10.1016/j.carbon.2014.10.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the growth of carbon nanotubes on tetrahedral-amorphous carbon using a Fe-Cu catalyst system at temperatures <500 degrees C. By X-ray photoemission spectroscopy, we show that Cu forms an alloy with Fe during the process of catalyst pretreatment. This not only dramatically enhances the catalytic activity of Fe towards the nucleation of nanotubes at low temperatures, but simultaneously reduces its propensity to diffuse into the bulk of carbon-based substrates, thus minimising support damage. Such results prove the feasibility of growing nanotubes directly on carbon fibres, highlighting their potential for use in composites and fuel cell electrodes. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:639 / 649
页数:11
相关论文
共 48 条
[1]   Capacitive nanoelectromechanical switch based on suspended carbon nanotube array [J].
Acquaviva, D. ;
Arun, A. ;
Esconjauregui, S. ;
Bouvet, D. ;
Robertson, J. ;
Smajda, R. ;
Magrez, A. ;
Forro, L. ;
Ionescu, A. M. .
APPLIED PHYSICS LETTERS, 2010, 97 (23)
[2]   On the mechanism of carbon nanotube formation: the role of the catalyst [J].
Ayre, G. N. ;
Uchino, T. ;
Mazumder, B. ;
Hector, A. L. ;
Hutchison, J. L. ;
Smith, D. C. ;
Ashburn, P. ;
de Groot, C. H. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (39)
[3]   Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites [J].
Bekyarova, E. ;
Thostenson, E. T. ;
Yu, A. ;
Kim, H. ;
Gao, J. ;
Tang, J. ;
Hahn, H. T. ;
Chou, T. -W. ;
Itkis, M. E. ;
Haddon, R. C. .
LANGMUIR, 2007, 23 (07) :3970-3974
[4]   PROMOTER EFFECTS ON PRECIPITATED IRON CATALYSTS FOR FISCHER-TROPSCH SYNTHESIS [J].
BUKUR, DB ;
MUKESH, D ;
PATEL, SA .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1990, 29 (02) :194-204
[5]   Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene [J].
Campos, Leonardo C. ;
Manfrinato, Vitor R. ;
Sanchez-Yamagishi, Javier D. ;
Kong, Jing ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2009, 9 (07) :2600-2604
[6]   The role of the sp2:sp3 substrate content in carbon supported nanotube growth [J].
Cartwright, Richard J. ;
Esconjauregui, Santiago ;
Weatherup, Robert S. ;
Hardeman, David ;
Guo, Yuzheng ;
Wright, Eleanor ;
Oakes, Daniel ;
Hofmann, Stephan ;
Robertson, John .
CARBON, 2014, 75 :327-334
[7]   Growth of carbon nanotube forests on carbon fibers with an amorphous silicon interface [J].
de Resende, Valdirene Gonzaga ;
Antunes, Erica Freire ;
Lobo, Anderson de Oliveira ;
Lima Oliveira, Deiler Antonio ;
Trava-Airoldi, Vladimir Jesus ;
Corat, Evaldo Jose .
CARBON, 2010, 48 (12) :3655-3658
[8]   The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts [J].
de Smit, Emiel ;
de Groot, Frank M. F. ;
Blume, Raoul ;
Haevecker, Michael ;
Knop-Gericke, Axel ;
Weckhuysen, Bert M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (03) :667-680
[9]   Growth of long and aligned multi-walled carbon nanotubes on carbon and metal substrates [J].
Delmas, M. ;
Pinault, M. ;
Patel, S. ;
Porterat, D. ;
Reynaud, C. ;
Mayne-L'Hermite, M. .
NANOTECHNOLOGY, 2012, 23 (10)
[10]   Chemical reactivity at Fe/CuO interface studied in situ by X-ray photoelectron spectroscopy [J].
Dong, H. ;
Edmondson, J. L. ;
Miller, R. L. ;
Chourasia, A. R. .
VACUUM, 2014, 101 :27-32