Graphene-based electromechanical thermal switches

被引:12
作者
Chen, Michelle E. [1 ]
Rojo, Miguel Munoz [2 ,3 ]
Lian, Feifei [3 ]
Koeln, Justin [4 ,5 ]
Sood, Aditya [1 ]
Bohaichuk, Stephanie M. [3 ]
Neumann, Christopher M. [3 ]
Garrow, Sarah G. [4 ]
Goodson, Kenneth E. [1 ,6 ]
Alleyne, Andrew G. [4 ]
Pop, Eric [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Univ Twente, Dept Thermal & Fluid Engn, NL-7500 AE Enschede, Netherlands
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[5] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[6] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
graphene; thermal switch; SThM; thermal conductivity; NEMS; TRANSPORT;
D O I
10.1088/2053-1583/abf08e
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal management is an important challenge in modern electronics, avionics, automotive, and energy storage systems. While passive thermal solutions (like heat sinks or heat spreaders) are often used, actively modulating heat flow (e.g. via thermal switches or diodes) would offer additional degrees of control over the management of thermal transients and system reliability. Here we report the first thermal switch based on flexible, collapsible graphene membranes with low operating voltage (similar to 2 V) and thermal switching ratio up to similar to 1.3. We also employ active-mode scanning thermal microscopy to measure the device behavior and switching in real time. A compact analytical thermal model is developed for the general case of a thermal switch based on a double-clamped suspended membrane, highlighting the thermal and electrical design challenges. System-level modeling demonstrates the thermal trade-offs between modulating temperature swing and average temperature as a function of switching ratio. These graphene-based thermal switches present new opportunities for active control of fast (even nanosecond) thermal transients in densely integrated systems.
引用
收藏
页数:9
相关论文
共 37 条
[1]   In Situ Observation of Electrostatic and Thermal Manipulation of Suspended Graphene Membranes [J].
Bao, Wenzhong ;
Myhro, Kevin ;
Zhao, Zeng ;
Chen, Zhen ;
Jang, Wanyoung ;
Jing, Lei ;
Miao, Feng ;
Zhang, Hang ;
Dames, Chris ;
Lau, Chun Ning .
NANO LETTERS, 2012, 12 (11) :5470-5474
[2]  
Beasley MA, 2004, AIP CONF PROC, V699, P119, DOI 10.1063/1.1649565
[3]   Nanoscale phase change memory with graphene ribbon electrodes [J].
Behnam, Ashkan ;
Xiong, Feng ;
Cappelli, Andrea ;
Wang, Ning C. ;
Carrion, Enrique A. ;
Hong, Sungduk ;
Dai, Yuan ;
Lyons, Austin S. ;
Chow, Edmond K. ;
Piccinini, Enrico ;
Jacoboni, Carlo ;
Pop, Eric .
APPLIED PHYSICS LETTERS, 2015, 107 (12)
[4]  
Chen CY, 2009, NAT NANOTECHNOL, V4, P861, DOI [10.1038/nnano.2009.267, 10.1038/NNANO.2009.267]
[5]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[6]   Fabrication and characterization of a thermal switch [J].
Cho, J. ;
Wiser, T. ;
Richards, C. ;
Bahr, D. ;
Richards, R. .
SENSORS AND ACTUATORS A-PHYSICAL, 2007, 133 (01) :55-63
[7]   Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps [J].
Choe, Hwan Sung ;
Suh, Joonki ;
Ko, Changhyun ;
Dong, Kaichen ;
Lee, Sangwook ;
Park, Joonsuk ;
Lee, Yeonbae ;
Wang, Kevin ;
Wu, Junqiao .
SCIENTIFIC REPORTS, 2017, 7
[8]   V-VO2 core-shell structure for potential thermal switching [J].
Dahal, Keshab ;
Zhang, Qian ;
Wang, Yumei ;
Mishra, Ishwar Kumar ;
Ren, Zhifeng .
RSC ADVANCES, 2017, 7 (54) :33775-33781
[9]   Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications [J].
Deng, Shikai ;
Berry, Vikas .
MATERIALS TODAY, 2016, 19 (04) :197-212
[10]   Temperature-Dependent Contact Resistance to Nonvolatile Memory Materials [J].
Deshmukh, Sanchit ;
Yalon, Eilam ;
Lian, Feifei ;
Schauble, Kirstin E. ;
Xiong, Feng ;
Karpov, Ilya V. ;
Pop, Eric .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (09) :3816-3821