The Schrodinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group

被引:19
作者
An, Yu-Cheng [1 ]
Liu, Hairong [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Peoples R China
[2] Nanjing Forestry Univ, Sch Sci, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
ASYMPTOTIC-BEHAVIOR; ELLIPTIC-EQUATIONS; HARNACK INEQUALITY; POSITIVE SOLUTIONS; CRITICAL GROWTH; EXISTENCE; UNIQUENESS; PRINCIPLE;
D O I
10.1007/s11856-020-1961-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the following Schrodinger-Poisson type system: {-Delta Hu+mu phi u=lambda divide u divide q-2u+ divide u divide 2u, in omega,-Delta H phi=u2, in omega,phi=u=0, on partial differential omega, where Delta(h) is the Kohn-Laplacian on the first Heisenberg group (1) and omega subset of (1) is a smooth bounded domain, 1 < q < 2, mu is an element of Double-struck capital R and lambda > 0 some real parameters. By the Green's representation formula, the concentration compactness and the critical point theory, we prove that the above system has at least two positive solutions for mu < S x meas(omega)(-1/2) and 1/2 small enough, where S s the best Sobolev constant. Moreover, we show also that there is a positive ground state solution for the above system. Our result is new even in the Euclidean case.
引用
收藏
页码:385 / 411
页数:27
相关论文
共 32 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   GENERALIZED SCHRODINGER-POISSON TYPE SYSTEMS [J].
Azzollini, Antonio ;
d'Avenia, Pietro ;
Luisi, Valeria .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) :867-879
[3]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[4]  
Birindelli I., 1995, REND SEM MAT UNIV P, V94, P137
[5]   SUBELLIPTIC AND PARAMETRIC EQUATIONS ON CARNOT GROUPS [J].
Bisci, Giovanni Molica ;
Ferrara, Massimiliano .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (07) :3035-3045
[6]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]   Multiple solitary waves for non-homogeneous Schrodinger-Maxwell equations [J].
Candela, Anna Maria ;
Salvatore, Addolorata .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2006, 3 (3-4) :483-493
[10]   AN EMBEDDING THEOREM AND THE HARNACK INEQUALITY FOR NONLINEAR SUBELLIPTIC EQUATIONS [J].
CAPOGNA, L ;
DANIELLI, D ;
GAROFALO, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1765-1794