Sziklai's conjecture on the number of points of a plane curve over a finite field III

被引:23
作者
Homma, Masaaki [1 ]
Kim, Seon Jeong [2 ,3 ]
机构
[1] Kanagawa Univ, Dept Math, Yokohama, Kanagawa 2218686, Japan
[2] Gyeongsang Natl Univ, Dept Math, Jinju 660701, South Korea
[3] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
关键词
Plane curve; Finite field; Rational point; Frobenius nonclassical curve;
D O I
10.1016/j.ffa.2010.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We manage an upper bound for the number of rational points of a Frobenius nonclassical plane curve over a finite field. Together with previous results, the modified Sziklai conjecture is settled affirmatively. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:315 / 319
页数:5
相关论文
共 9 条
[1]   FROBENIUS NONCLASSICAL CURVES [J].
HEFEZ, A ;
VOLOCH, JF .
ARCHIV DER MATHEMATIK, 1990, 54 (03) :263-273
[2]   CORRECTION [J].
HEFEZ, A .
ARCHIV DER MATHEMATIK, 1991, 57 (04) :416-416
[3]  
Hirschfeld J.W.P., 2008, Princeton Series in Applied Mathematics
[4]   On the number of solutions of an equation over a finite field [J].
Hirschfeld, JWP ;
Korchmaros, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :16-24
[5]  
HOMMA M, 2010, DETERMINATION OPTIMA
[6]  
HOMMA M, 2010, CONT MATH IN PRESS, V518
[7]   Around Sziklai's conjecture on the number of points of a plane curve over a finite field [J].
Homma, Masaaki ;
Kim, Seon Jeong .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (04) :468-474
[8]  
STOHR KO, 1986, P LOND MATH SOC, V52, P1
[9]   A bound on the number of points of a plane curve [J].
Sziklai, Peter .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) :41-43