A geometry conforming isogeometric method for the self-adjoint angular flux (SAAF) form of the neutron transport equation with a discrete ordinate (SN) angular discretisation

被引:9
作者
Latimer, C. [1 ]
Kophazi, J. [1 ]
Eaton, M. D. [1 ]
McClarren, R. G. [2 ]
机构
[1] Imperial Coll London, Dept Mech Engn, Nucl Engn Grp, City & Guilds Bldg,Exhibit Rd, London SW7 2AZ, England
[2] Univ Notre Dame, Dept Aerosp & Mech Engn, Fitzpatrick Hall, Notre Dame, IN 46556 USA
基金
英国工程与自然科学研究理事会;
关键词
Isogeometric analysis; SAAF; Discrete ordinates; Variational principle; SPECTRAL ELEMENT METHOD; PETROV-GALERKIN METHODS; DIFFUSION EQUATION; FINITE-ELEMENTS; 1ST-ORDER FORM; NURBS; REFINEMENT;
D O I
10.1016/j.anucene.2019.107049
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This paper presents the application of isogeometric analysis (IGA) to the spatial discretisation of the multi-group, self-adjoint angular flux (SAAF) form of the neutron transport equation with a discrete ordinate (S-N) angular discretisation. The IGA spatial discretisation is based upon non-uniform rational B-spline (NURBS) basis functions for both the test and trial functions. In addition a source iteration compatible maximum principle is used to derive the IGA spatially discretised SAAF equation. It is demonstrated that this maximum principle is mathematically equivalent to the weak form of the SAAF equation. The rate of convergence of the IGA spatial discretisation of the SAAF equation is analysed using a method of manufactured solutions (MMS) verification test case. The results of several nuclear reactor physics verification benchmark test cases are analysed. This analysis demonstrates that for higher-order basis functions, and for the same number of degrees of freedom, the FE based spatial discretisation methods are numerically less accurate than IGA methods. The difference in numerical accuracy between the IGA and FE methods is shown to be because of the higher-order continuity of NURBS basis functions within a NURBS patch as well as the preservation of both the volume and surface area throughout the solution domain within the IGA spatial discretisation. Finally, the numerical results of applying the IGA SAAF method to the OECD/NEA, seven-group, two-dimensional C5G7 quarter core nuclear reactor physics verification benchmark test case are presented. The results, from this verification benchmark test case, are shown to be in good agreement with solutions of the first-order form as well as the second-order even-parity form of the neutron transport equation for the same order of discrete ordinate (S-N) angular approximation. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 63 条
  • [1] Ackroyd R.T., 1997, FINITE ELEMENT METHO
  • [2] Ackroyd R.T, 2006, ANN NUCL ENERGY, V33, P1271
  • [4] FINITE-ELEMENT METHOD FOR NEUTRON-TRANSPORT .1. SOME THEORETICAL CONSIDERATIONS
    ACKROYD, RT
    [J]. ANNALS OF NUCLEAR ENERGY, 1978, 5 (02) : 75 - 94
  • [5] [Anonymous], 2009, ISOGEOMETRIC ANAL IN
  • [6] [Anonymous], 2006, FINITE ELEMENTS APPR
  • [7] The spectral element method for static neutron transport in AN approximation. Part II
    Barbarino, A.
    Dulla, S.
    Mund, E. H.
    Ravetto, P.
    [J]. ANNALS OF NUCLEAR ENERGY, 2015, 86 : 108 - 115
  • [8] The spectral element method for static neutron transport in AN approximation. Part I
    Barbarino, A.
    Dulla, S.
    Mund, E. H.
    Ravetto, P.
    [J]. ANNALS OF NUCLEAR ENERGY, 2013, 53 : 372 - 380
  • [9] Isogeometric analysis using T-splines
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J. A.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 229 - 263
  • [10] Fast formation of isogeometric Galerkin matrices by weighted quadrature
    Calabro, F.
    Sangalli, G.
    Tani, M.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 606 - 622