Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

被引:34
作者
Bayn, I. [1 ,2 ]
Mouradian, S. [1 ,2 ]
Li, L. [1 ,2 ]
Goldstein, J. A. [1 ,2 ]
Schroeder, T. [1 ,2 ]
Zheng, J. [1 ,2 ]
Chen, E. H. [1 ,2 ]
Gaathon, O. [1 ,2 ]
Lu, M. [3 ]
Stein, A. [3 ]
Ruggiero, C. A. [3 ]
Salzman, J. [4 ,5 ]
Kalish, R. [6 ,7 ]
Englund, Dirk [1 ,2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[4] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[5] Technion Israel Inst Technol, Microelect Res Ctr, IL-32000 Haifa, Israel
[6] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[7] Technion Israel Inst Technol, Inst Solid State, IL-32000 Haifa, Israel
关键词
SPIN COHERENCE TIME; COLOR-CENTER; CAVITY; CENTERS;
D O I
10.1063/1.4902562
中图分类号
O59 [应用物理学];
学科分类号
摘要
A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 x 10(6)) photonic crystal cavities with low mode volume (V-m = 1.062 x (lambda/n)(3)), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 x 10(3). (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 23 条
[1]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[2]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Processing of photonic crystal nanocavity for quantum information in diamond [J].
Bayn, Igal ;
Meyler, Boris ;
Lahav, Alex ;
Salzman, Joseph ;
Kalish, Rafi ;
Fairchild, Barbara A. ;
Prawer, Steven ;
Barth, Michael ;
Benson, Oliver ;
Wolf, Thomas ;
Siyushev, Petr ;
Jelezko, Fedor ;
Wrachtrup, Jorg .
DIAMOND AND RELATED MATERIALS, 2011, 20 (07) :937-943
[4]   Triangular nanobeam photonic cavities in single-crystal diamond [J].
Bayn, Igal ;
Meyler, Boris ;
Salzman, Joseph ;
Kalish, Rafi .
NEW JOURNAL OF PHYSICS, 2011, 13
[5]  
Burek M. J., ARXIV14085973
[6]   Free-Standing Mechanical and Photonic Nanostructures in Single-Crystal Diamond [J].
Burek, Michael J. ;
de Leon, Nathalie P. ;
Shields, Brendan J. ;
Hausmann, Birgit J. M. ;
Chu, Yiwen ;
Quan, Qimin ;
Zibrov, Alexander S. ;
Park, Hongkun ;
Lukin, Mikhail D. ;
Loncar, Marko .
NANO LETTERS, 2012, 12 (12) :6084-6089
[7]   Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters [J].
Childress, L ;
Taylor, JM ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2005, 72 (05)
[8]   Room-temperature entanglement between single defect spins in diamond [J].
Dolde, F. ;
Jakobi, I. ;
Naydenov, B. ;
Zhao, N. ;
Pezzagna, S. ;
Trautmann, C. ;
Meijer, J. ;
Neumann, P. ;
Jelezko, F. ;
Wrachtrup, J. .
NATURE PHYSICS, 2013, 9 (03) :139-143
[9]   Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity [J].
Englund, Dirk ;
Shields, Brendan ;
Rivoire, Kelley ;
Hatami, Fariba ;
Vuckovic, Jelena ;
Park, Hongkun ;
Lukin, Mikhail D. .
NANO LETTERS, 2010, 10 (10) :3922-3926
[10]   Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond [J].
Faraon, Andrei ;
Santori, Charles ;
Huang, Zhihong ;
Acosta, Victor M. ;
Beausoleil, Raymond G. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)