The smoothed-penalty algorithm for state constrained optimal control problems for partial differential equations

被引:15
作者
Gugat, Martin [2 ]
Herty, Michael [1 ]
机构
[1] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
[2] Univ Erlangen Nurnberg, Lehrstuhl Angew Math 2 4, D-91058 Erlangen, Germany
关键词
exact penalty function; optimal control problem; optimization with partial differential equations; ACTIVE SET STRATEGY; PRIMAL-DUAL STRATEGY; BOUNDARY CONTROL; NEWTON METHODS; OPTIMIZATION; SYSTEM;
D O I
10.1080/10556780903002750
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an algorithm for the solution of general inequality constrained optimization problems. The algorithm is based upon an exact penalty function that is approximated by a family of smooth functions. We present convergence results. As numerical examples we treat state constrained optimal control problems for elliptic partial differential equations. We compare the results with existing methods.
引用
收藏
页码:573 / 599
页数:27
相关论文
共 36 条
[1]  
BENTAL A, 1988, LECT NOTES MATH, V1405, P1
[2]   Primal-dual strategy for constrained optimal control problems [J].
Bergounioux, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1176-1194
[3]   Augmented Lagrangian techniques for elliptic state constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) :1524-1543
[4]   Primal-dual strategy for state-constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (02) :193-224
[5]   A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems [J].
Bergounioux, M ;
Haddou, M ;
Hintermüller, M ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (02) :495-521
[6]   NECESSARY AND SUFFICIENT CONDITIONS FOR A PENALTY METHOD TO BE EXACT [J].
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1975, 9 (01) :87-99
[7]   Steering exact penalty methods for nonlinear programming [J].
Byrd, Richard H. ;
Nocedal, Jorge ;
Waltz, Richard A. .
OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02) :197-213
[9]  
CHEN C, 1996, COMPUT OPTIM APPL, V5, P5
[10]   CONSTRAINED OPTIMIZATION USING A NONDIFFERENTIABLE PENALTY FUNCTION [J].
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) :760-784