OPTIMIZATION PROBLEMS ON THE SIERPINSKI GASKET

被引:0
作者
Galewski, Marek [1 ]
机构
[1] Lodz Univ Technol, Inst Math, Wolczanska 215, PL-90924 Lodz, Poland
关键词
Control problem; Sierpinski gasket; direct variational method; continuous dependence on parameters; NONLINEAR ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; FRACTALS; SYSTEMS; SPECTRUM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of an optimal process for such an optimal control problem in which the dynamics is given by the Dirichlet problem driven by weak Laplacian on the Sierpinski gasket. To accomplish this task using a direct variational approach with no global growth conditions on the nonlinear term, we consider the existence of solutions, their uniqueness and their dependence on a functional parameter for mentioned Dirichlet problem. This allows us to prove that the optimal control problem admits at least one solution.
引用
收藏
页数:11
相关论文
共 25 条
[1]   SOME PROPERTIES OF THE SPECTRUM OF THE SIERPINSKI GASKET IN A MAGNETIC-FIELD [J].
ALEXANDER, S .
PHYSICAL REVIEW B, 1984, 29 (10) :5504-5508
[2]  
Bisci GM, 2015, P AM MATH SOC, V143, P2959
[3]   Qualitative analysis of gradient-type systems with oscillatory nonlinearities on the Sierpinski Gasket [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (03) :381-398
[4]   VARIATIONAL ANALYSIS FOR A NONLINEAR ELLIPTIC PROBLEM ON THE SIERPINSKI GASKET [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) :941-953
[5]   INFINITELY MANY SOLUTIONS FOR THE DIRICHLET PROBLEM ON THE SIERPINSKI GASKET [J].
Breckner, Brigitte E. ;
Radulescu, Vicentiu D. ;
Varga, Csaba .
ANALYSIS AND APPLICATIONS, 2011, 9 (03) :235-248
[6]   On the existence of three solutions for the Dirichlet problem on the Sierpinski gasket [J].
Breckner, Brigitte E. ;
Repovs, Dusan ;
Varga, Csaba .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) :2980-2990
[7]  
Chen H, 2009, ACTA MATH SCI, V29, P232
[8]  
Falconer K., 2003, FRACTAL GEOMETRY MAT, DOI DOI 10.1002/0470013850
[9]   Semilinear PDEs on self-similar fractals [J].
Falconer, KJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 206 (01) :235-245
[10]   Non-linear elliptical equations on the Sierpinski gasket [J].
Falconer, KJ ;
Hu, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) :552-573