Bearing Fault Diagnosis Method Based on Singular Value Decomposition and Hidden Markov Model

被引:0
|
作者
Xu, Hongwu [1 ,2 ]
Fan, Yugang [1 ,2 ]
Wu, Jiande [1 ,2 ]
Gao, Yang [1 ,2 ]
Yu, Zhongli [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
[2] Engn Res Ctr Mineral Pipeline Transportat YN, Kunming 650500, Peoples R China
关键词
Singular Value Decomposition; Hankel Matrix; Hidden Markov Model; Antifriction Bearing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The fault signal feature extraction and fault identification of the bearing has important scientific research significance in the mechanized production. Aiming at this, this paper puts forward bearing fault diagnosis method based on singular value decomposition (SVD) and Hidden Markov Model (HMM). To gain required fault feature information, firstly, it builds Hankel matrix, and conducts decomposition through SVD. SVD method is helpful for gaining effective fault feature information from the complex bearing fault signals, and then apply the achieved characteristic value to build the training model of Markov. The test result proves that the method of this paper has good practicability in the bearing fault identification.
引用
收藏
页码:6355 / 6359
页数:5
相关论文
共 50 条
  • [21] Fault Diagnosis and Prognosis of Bearing Based on Hidden Markov Model with Multi-Features
    Zhao, Weiguo
    Shi, Tiancong
    Wang, Liying
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (01) : 71 - 84
  • [22] Application of KPCA and coupled hidden Markov model in bearing fault diagnosis
    Chen, Jin, 1600, Chinese Vibration Engineering Society (33):
  • [23] Early Fault Diagnosis Method for Rolling Bearing Based on Improved Singular Values Decomposition
    Lei, Zhen
    Zheng, Yinhuan
    Sun, Chengwen
    Lu, Hong
    Qi, Junde
    Zhang, Wei
    Zou, Chao
    Li, Zhangjie
    INTELLIGENT NETWORKED THINGS, CINT 2024, PT I, 2024, 2138 : 22 - 31
  • [24] A Fault Diagnosis Method based on Singular Spectrum Decomposition and Envelope Autocorrelation for Rolling Bearing
    Niu, Ben
    Li, Maolin
    Jia, Linshan
    Shan, Lei
    Liang, Lin
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 920 - 925
  • [25] A fault diagnosis method of rolling bearings using empirical mode decomposition and hidden Markov model
    Wu, Bin
    Feng, Changjian
    Wang, Minjie
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 5697 - +
  • [26] Fault diagnosis on railway vehicle bearing based on fast extended singular value decomposition packet
    Huang, Yan
    Huang, Chenguang
    Ding, Jianming
    Liu, Zechao
    MEASUREMENT, 2020, 152
  • [27] Rolling Bearing Fault Diagnosis Based on Optimal Notch Filter and Enhanced Singular Value Decomposition
    Pang, Bin
    He, Yuling
    Tang, Guiji
    Zhou, Chong
    Tian, Tian
    ENTROPY, 2018, 20 (07):
  • [28] A hybrid fault diagnosis method based on singular value difference spectrum denoising and local mean decomposition for rolling bearing
    Ma, Jun
    Wu, Jiande
    Wang, Xiaodong
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2018, 37 (04) : 928 - 954
  • [29] Wavelet Grey Moment Vector and Hidden Markov Model Based Fault Diagnosis for Ball Bearing
    Xuan, Jianping
    Xu, Zengbing
    Wu, Bo
    Shi, Tielin
    SUSTAINABLE CONSTRUCTION MATERIALS AND COMPUTER ENGINEERING, 2012, 346 : 210 - +
  • [30] A bearing fault diagnosis method based on EMD and difference spectrum theory of singular value
    Zhang, Chao
    Chen, Jian-Jun
    Xu, Ya-Lan
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2011, 24 (05): : 539 - 545