Bearing Fault Diagnosis Method Based on Singular Value Decomposition and Hidden Markov Model

被引:0
|
作者
Xu, Hongwu [1 ,2 ]
Fan, Yugang [1 ,2 ]
Wu, Jiande [1 ,2 ]
Gao, Yang [1 ,2 ]
Yu, Zhongli [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
[2] Engn Res Ctr Mineral Pipeline Transportat YN, Kunming 650500, Peoples R China
关键词
Singular Value Decomposition; Hankel Matrix; Hidden Markov Model; Antifriction Bearing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The fault signal feature extraction and fault identification of the bearing has important scientific research significance in the mechanized production. Aiming at this, this paper puts forward bearing fault diagnosis method based on singular value decomposition (SVD) and Hidden Markov Model (HMM). To gain required fault feature information, firstly, it builds Hankel matrix, and conducts decomposition through SVD. SVD method is helpful for gaining effective fault feature information from the complex bearing fault signals, and then apply the achieved characteristic value to build the training model of Markov. The test result proves that the method of this paper has good practicability in the bearing fault identification.
引用
收藏
页码:6355 / 6359
页数:5
相关论文
共 50 条
  • [1] BEARING FAULT DIAGNOSIS USING SINGULAR VALUE DECOMPOSITION AND HIDDEN MARKOV MODELING
    Wang, Dong
    Miao, Qiang
    Sun, Rui
    Huang, Hong-Zhong
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 3, 2010, : 811 - 817
  • [2] A Bearing Fault Diagnosis Method Based on Enhanced Singular Value Decomposition
    Li, Hua
    Liu, Tao
    Wu, Xing
    Chen, Qing
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) : 3220 - 3230
  • [3] Bearing Fault Diagnosis Method Based on Improved Singular Value Decomposition Package
    Zhu, Huibin
    He, Zhangming
    Xiao, Yaqi
    Wang, Jiongqi
    Zhou, Haiyin
    SENSORS, 2023, 23 (07)
  • [4] Early bearing fault diagnosis based on the improved singular value decomposition method
    Lingli Cui
    Mengxin Sun
    Chunqing Zha
    The International Journal of Advanced Manufacturing Technology, 2023, 124 : 3899 - 3910
  • [5] Early bearing fault diagnosis based on the improved singular value decomposition method
    Cui, Lingli
    Sun, Mengxin
    Zha, Chunqing
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 124 (11-12): : 3899 - 3910
  • [6] Bearing fault diagnosis method based on GMM and Coupled Hidden Markov model
    Cao, Liang
    Xia, Yubin
    Shen, Yong
    Wang, Jinglin
    Shan, Tianmin
    Lin, Zeli
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 932 - 936
  • [7] An image dimensionality reduction method for rolling bearing fault diagnosis based on singular value decomposition
    Wang, Yi
    Liu, Dan
    Xu, Guanghua
    Jiang, Kuosheng
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2016, 230 (11) : 1830 - 1845
  • [8] Method of Turnout Fault Diagnosis Based on Hidden Markov Model
    Xu Q.
    Liu Z.
    Zhao H.
    Liu, Zhongtian (liuzht@bjtu.edu.cn), 2018, Science Press (40): : 98 - 106
  • [9] Singular spectrum analysis and continuous hidden Markov model for rolling element bearing fault diagnosis
    Liu, Tao
    Chen, Jin
    Dong, Guangming
    JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (08) : 1506 - 1521
  • [10] Research on rolling bearing fault diagnosis technology based on singular value decomposition
    Ji, Jingfang
    Ge, Jingmin
    AIP ADVANCES, 2024, 14 (08)