Hydrodynamic Stabilization of Self-Organized Criticality in a Driven Rydberg Gas

被引:7
作者
Klocke, K. [1 ,2 ,3 ]
Wintermantel, T. M. [4 ,5 ,6 ]
Lochead, G. [4 ,5 ]
Whitlock, S. [4 ,5 ]
Buchhold, M. [1 ,2 ,7 ]
机构
[1] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Univ Strasbourg, ISIS, UMR 7006, F-67000 Strasbourg, France
[5] CNRS, F-67000 Strasbourg, France
[6] Heidelberg Univ, Phys Inst, D-69120 Heidelberg, Germany
[7] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
基金
美国国家科学基金会;
关键词
PHASE-TRANSITION; TURBULENCE; NETWORKS; SYSTEMS;
D O I
10.1103/PhysRevLett.126.123401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Signatures of self-organized criticality (SOC) have recently been observed in an ultracold atomic gas under continuous laser excitation to strongly interacting Rydberg states [S. Helmrich et al., Nature, 577, 481-486 (2020)]. This creates unique possibilities to study this intriguing dynamical phenomenon under controlled experimental conditions. Here we theoretically and experimentally examine the self-organizing dynamics of a driven ultracold gas and identify an unanticipated feedback mechanism originating from the interaction of the system with a thermal reservoir. Transport of particles from the flanks of the cloud toward the center compensates avalanche-induced atom loss. This mechanism sustains an extended critical region in the trap center for timescales much longer than the initial self-organization dynamics. The characteristic flattop density profile provides an additional experimental signature for SOC while simultaneously enabling studies of SOC under almost homogeneous conditions. We present a hydrodynamic description for the reorganization of the atom density, which very accurately describes the experimentally observed features on intermediate and long timescales, and which is applicable to both collisional hydrodynamic and chaotic ballistic regimes.
引用
收藏
页数:6
相关论文
共 60 条
  • [31] Controlling excitation avalanches in driven Rydberg gases
    Klocke, Kai
    Buchhold, Michael
    [J]. PHYSICAL REVIEW A, 2019, 99 (05)
  • [32] Collective Quantum Jumps of Rydberg Atoms
    Lee, Tony E.
    Haeffner, H.
    Cross, M. C.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (02)
  • [33] Lemoult G, 2016, NAT PHYS, V12, P254, DOI [10.1038/NPHYS3675, 10.1038/nphys3675]
  • [34] Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation
    Lesanovsky, Igor
    Garrahan, Juan P.
    [J]. PHYSICAL REVIEW A, 2014, 90 (01):
  • [35] Kinetic Constraints, Hierarchical Relaxation, and Onset of Glassiness in Strongly Interacting and Dissipative Rydberg Gases
    Lesanovsky, Igor
    Garrahan, Juan P.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (21)
  • [36] Dynamical synapses causing self-organized criticality in neural networks
    Levina, A.
    Herrmann, J. M.
    Geisel, T.
    [J]. NATURE PHYSICS, 2007, 3 (12) : 857 - 860
  • [37] An experimental and theoretical guide to strongly interacting Rydberg gases
    Loew, Robert
    Weimer, Hendrik
    Nipper, Johannes
    Balewski, Jonathan B.
    Butscher, Bjoern
    Buechler, Hans Peter
    Pfau, Tilman
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (11)
  • [38] Full Counting Statistics and Phase Diagram of a Dissipative Rydberg Gas
    Malossi, N.
    Valado, M. M.
    Scotto, S.
    Huillery, P.
    Pillet, P.
    Ciampini, D.
    Arimondo, E.
    Morsch, O.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (02)
  • [39] Non-equilibrium universality in the dynamics of dissipative cold atomic gases
    Marcuzzi, M.
    Levi, E.
    Li, W.
    Garrahan, J. P.
    Olmos, B.
    Lesanovsky, I.
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [40] Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations
    Marcuzzi, Matteo
    Buchhold, Michael
    Diehl, Sebastian
    Lesanovsky, Igor
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (24)