Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis

被引:175
作者
Tao, Youshan [1 ]
机构
[1] Donghua Univ, Dept Appl Math, Shanghai 200051, Peoples R China
基金
中国国家自然科学基金;
关键词
Reaction-diffusion-taxis system; Predator-prey; Classical solutions; Global existence; PARABOLIC EQUATIONS; CHEMOTAXIS SYSTEM; LOGISTIC SOURCE;
D O I
10.1016/j.nonrwa.2009.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a predator-prey model consisting of a 2 x 2 reaction-diffusion-taxis system recently proposed by Ainseba, Bendahmane and Noussair [BE. Ainseba, M. Bendahmane, A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. RWA 9 (2008) 2086-2105]. The central point of this system is that the spatial-temporal variations of the predators' velocity are directed by the prey gradient. The global existence and uniqueness of classical solutions to this system are proved by the contraction mapping principle, together with L-p estimates and Schauder estimates of parabolic equations. The crucial point of the proof is to deal with the prey-tactic term with a nonlinear tactic function. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2056 / 2064
页数:9
相关论文
共 15 条
[1]   A reaction-diffusion system modeling predator-prey with prey-taxis [J].
Ainseba, Bedr'Eddine ;
Bendahmane, Mostafa ;
Noussair, Ahmed .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) :2086-2105
[2]   Nonlinear anisotropic elliptic and parabolic equations in RN with advection and lower order terms and locally integrable data [J].
Bendahmane, M ;
Karlsen, K .
POTENTIAL ANALYSIS, 2005, 22 (03) :207-227
[3]   Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations [J].
Bendahmane, M ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) :405-422
[4]   On some anisotropic reaction-diffusion systems with L1-data modeling an epidemic the propagation of disease [J].
Bendahmane, M ;
Langlais, M ;
Saad, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :617-636
[5]   ANALYSIS OF A REACTION-DIFFUSION SYSTEM MODELING PREDATOR-PREY WITH PREY-TAXIS [J].
Bendahmane, Mostafa .
NETWORKS AND HETEROGENEOUS MEDIA, 2008, 3 (04) :863-879
[6]  
Cieslak T, 2007, TOPOL METHOD NONL AN, V29, P361
[7]   Analysis of a mathematical model of tumor lymphangiogenesis [J].
Friedman, A ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (01) :95-107
[8]   Global existence for a parabolic chemotaxis model with prevention of overcrowding [J].
Hillen, T ;
Painter, K .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (04) :280-301
[9]   Boundedness vs. blow-up in a chemotaxis system [J].
Horstmann, D ;
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :52-107
[10]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&