Non-Linear Text Regression with a Deep Convolutional Neural Network

被引:0
|
作者
Bitvai, Zsolt [1 ]
Cohn, Trevor [2 ]
机构
[1] Univ Sheffield, Sheffield, S Yorkshire, England
[2] Univ Melbourne, Melbourne, Vic, Australia
来源
PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL) AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (IJCNLP), VOL 2 | 2015年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text regression has traditionally been tackled using linear models. Here we present a non-linear method based on a deep convolutional neural network. We show that despite having millions of parameters, this model can be trained on only a thousand documents, resulting in a 40% relative improvement over sparse linear models, the previous state of the art. Further, this method is flexible allowing for easy incorporation of side information such as document meta-data. Finally we present a novel technique for interpreting the effect of different text inputs on this complex non-linear model.
引用
收藏
页码:180 / 185
页数:6
相关论文
共 50 条
  • [1] Neural networks and non-linear regression
    Stein, WE
    Dattero, R
    Mizzi, PJ
    DECISION SCIENCES INSTITUTE 1998 PROCEEDINGS, VOLS 1-3, 1998, : 1075 - 1077
  • [2] Non-linear modelling with a coupled neural network - PLS regression system
    Andersson, G
    Kaufmann, P
    Renberg, L
    JOURNAL OF CHEMOMETRICS, 1996, 10 (5-6) : 605 - 614
  • [3] A novel Deep Neural Network architecture for non-linear system identification
    Zancato, Luca
    Chiuso, Alessandro
    IFAC PAPERSONLINE, 2021, 54 (07): : 186 - 191
  • [4] Deep Convolutional Neural Network for Recognizing the Images of Text Documents
    Golovko, Vladimir
    Kroshchanka, Aliaksandr
    Mikhno, Egor
    Komar, Myroslav
    Sachenko, Anatoliy
    Bezobrazov, Sergei
    Shylinska, Inna
    MOMLET&DS-2019: MODERN MACHINE LEARNING TECHNOLOGIES AND DATA SCIENCE, 2019, 2386 : 297 - 306
  • [5] Learning a non-linear controller for insect flight dynamics with a deep neural network
    Switzer, C. M.
    Bustamante, J.
    Daniel, T. L.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2019, 59 : E419 - E419
  • [6] Settlement prediction of a high embankment based on non-linear regression and neural network algorithm
    Yang, Enhui
    Wang, Kai
    He, Jinhong
    Liu, Kaiwen
    Wang, Junxin
    Zhang, Haopeng
    Qiu, Yanjun
    TRANSPORTATION GEOTECHNICS, 2025, 50
  • [7] Predicting the non-linear response of composite materials using deep recurrent convolutional neural networks
    El Said, Bassam
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 276
  • [8] REGRESSION FUNCTION OF A BANDPASS NON-LINEAR (BPNL) NETWORK
    LAMMERS, HC
    DEBOER, E
    PROCEEDINGS OF THE IEEE, 1979, 67 (03) : 432 - 434
  • [9] NON-LINEAR PROGRAMMING AND NON-LINEAR REGRESSION PROCEDURES
    EDWARDS, C
    JOURNAL OF FARM ECONOMICS, 1962, 44 (01): : 100 - 114
  • [10] Deep learning classification of biomedical text using convolutional neural network
    Dollah R.
    Sheng C.Y.
    Zakaria N.
    Othman M.S.
    Rasib A.W.
    International Journal of Advanced Computer Science and Applications, 2019, 10 (08): : 512 - 517