On the partial terminal Steiner tree problem

被引:14
作者
Hsieh, Sun-Yuan [1 ]
Gao, Huang-Ming [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
关键词
the Steiner tree problem; the partial terminal Steiner tree problem; NP-complete; MAX SNP-hard; approximation algorithms;
D O I
10.1007/s11227-007-0102-z
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate a practical variant of the well-known graph Steiner tree problem. For a complete graph G = (V, E) with length function l : E -> R+ and two vertex subsets R subset of V and R ' subset of R, a partial terminal Steiner tree is a Steiner tree which contains all vertices in R such that all vertices in R backslash R ' belong to the leaves of this Steiner tree. The partial terminal Steiner tree problem is to find a partial terminal Steiner tree T whose total lengths Sigma((u, v)epsilon T) l(u, v) is minimum. In this paper, we show that the problem is both NP-complete and MAX SNP-hard when the lengths of edges are restricted to either 1 or 2. We also provide an approximation algorithm for the problem.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 28 条
[1]   Proof verification and the hardness of approximation problems [J].
Arora, S ;
Lund, C ;
Motwani, R ;
Sudan, M ;
Szegedy, M .
JOURNAL OF THE ACM, 1998, 45 (03) :501-555
[2]   IMPROVED APPROXIMATIONS FOR THE STEINER TREE PROBLEM [J].
BERMAN, P ;
RAMAIYER, V .
JOURNAL OF ALGORITHMS, 1994, 17 (03) :381-408
[3]   THE STEINER PROBLEM WITH EDGE LENGTH-1 AND LENGTH-2 [J].
BERN, M ;
PLASSMANN, P .
INFORMATION PROCESSING LETTERS, 1989, 32 (04) :171-176
[4]   FASTER EXACT ALGORITHMS FOR STEINER TREES IN PLANAR NETWORKS [J].
BERN, M .
NETWORKS, 1990, 20 (01) :109-120
[5]   The k-Steiner ratio in graphs [J].
Borchers, A ;
Du, DZ .
SIAM JOURNAL ON COMPUTING, 1997, 26 (03) :857-869
[6]  
Caldwell A. E., 1998, ISPD-98. 1998 International Symposium on Physical Design, P4, DOI 10.1145/274535.274536
[7]  
Chen YH, 2003, LECT NOTES COMPUT SC, V2697, P122
[8]  
Cheng X., 2001, STEINER TREES IND
[9]  
Cormen T. H., 2001, Introduction to Algorithms, V2nd
[10]   On approximation algorithms for the terminal Steiner tree problem [J].
Drake, DE ;
Hougardy, S .
INFORMATION PROCESSING LETTERS, 2004, 89 (01) :15-18