Lagrange multipliers for functions derivable along directions in a linear subspace

被引:6
作者
An, LH [1 ]
Du, PX
Duc, DM
Van Tuoc, P
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[3] Natl Univ, Dept Math, Ho Chi Minh City, Vietnam
[4] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Lagrange multipliers theorem; Lax-Milgram theorem; variational inequalities; quasilinear elliptic eigenvalue problems;
D O I
10.1090/S0002-9939-04-07711-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Lagrange multipliers theorem for a class of functions that are derivable along directions in a linear subspace of a Banach space where they are defined. Our result is available for topological linear vector spaces and is stronger than the classical one even for two-dimensional spaces, because we only require the differentiablity of functions at critical points. Applying these results we generalize the Lax-Milgram theorem. Some applications in variational inequalities and quasilinear elliptic equations are given.
引用
收藏
页码:595 / 604
页数:10
相关论文
共 14 条
[1]  
Adams R., 1975, Sobolev space
[2]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[3]   Critical points for multiple integrals of the calculus of variations [J].
Arcoya, D ;
Boccardo, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 134 (03) :249-274
[4]   Some remarks on critical point theory for nondifferentiable functionals [J].
Arcoya, David ;
Boccardo, Lucio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01) :79-100
[5]  
BREZIS H, 1987, ANAL FONCTIONELLE
[6]  
DU PX, 2002, ACTA MATH VIETNAMICA, V27, P69
[7]  
DUC DM, 1989, J LOND MATH SOC, V40, P420
[8]  
LANG S, 1969, ANALYSIS, V1
[9]   MINIMIZATION PROBLEMS FOR NONCOERCIVE FUNCTIONALS SUBJECT TO CONSTRAINTS [J].
LE, VK ;
SCHMITT, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (11) :4485-4513
[10]  
Pellacci B., 2001, TOPOL METHOD NONL AN, V17, P285