Minimal volume entropy of free-by-cyclic groups and 2-dimensional right-angled Artin groups

被引:7
|
作者
Bregman, Corey [1 ]
Clay, Matt [2 ]
机构
[1] Univ Southern Maine, Dept Math, Portland, ME 04103 USA
[2] Univ Arkansas, Dept Math, Fayetteville, AR 72701 USA
关键词
MANIFOLDS;
D O I
10.1007/s00208-021-02211-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a free-by-cyclic group or a 2-dimensional right-angled Artin group. We provide an algebraic and a geometric characterization for when each aspherical simplicial complex with fundamental group isomorphic to G has minimal volume entropy equal to 0. In the nonvanishing case, we provide a positive lower bound to the minimal volume entropy of an aspherical simplicial complex of minimal dimension for these two classes of groups. Our results rely upon a criterion for the vanishing of the minimal volume entropy for 2-dimensional groups with uniform uniform exponential growth. This criterion is shown by analyzing the fiber pi(1)-growth collapse and non-collapsing assumptions of Babenko-Sabourau (Minimal volume entropy and fiber growth, arXiv:2102.04551, 2020).
引用
收藏
页码:1253 / 1281
页数:29
相关论文
共 50 条
  • [31] Liftable automorphisms of right-angled Artin groups
    Oh, Sangrok
    Seo, Donggyun
    Tranchida, Philippe
    JOURNAL OF GROUP THEORY, 2024,
  • [32] Embedability between right-angled Artin groups
    Kim, Sang-Hyun
    Koberda, Thomas
    GEOMETRY & TOPOLOGY, 2013, 17 (01) : 493 - 530
  • [33] Palindromic automorphisms of right-angled Artin groups
    Fullarton, Neil J.
    Thomas, Anne
    GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (03) : 865 - 887
  • [34] EFFECTIVE QUASIMORPHISMS ON RIGHT-ANGLED ARTIN GROUPS
    Fernos, Talia
    Forester, Max
    Tao, Jing
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (04) : 1575 - 1626
  • [35] Amenable covers of right-angled Artin groups
    Li, Kevin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (02) : 978 - 989
  • [36] The R∞-property for right-angled Artin groups
    Dekimpe, Karel
    Senden, Pieter
    TOPOLOGY AND ITS APPLICATIONS, 2021, 293
  • [37] Algebraic invariants for right-angled Artin groups
    Papadima, S
    Suciu, AI
    MATHEMATISCHE ANNALEN, 2006, 334 (03) : 533 - 555
  • [38] The action dimension of right-angled Artin groups
    Avramidi, Grigori
    Davis, Michael W.
    Okun, Boris
    Schreve, Kevin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 115 - 126
  • [39] GROUPS QUASI-ISOMETRIC TO RIGHT-ANGLED ARTIN GROUPS
    Huang, Jingyin
    Kleiner, Bruce
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (03) : 537 - 602
  • [40] Embedding right-angled Artin groups into graph braid groups
    Sabalka, Lucas
    GEOMETRIAE DEDICATA, 2007, 124 (01) : 191 - 198