Minimal volume entropy of free-by-cyclic groups and 2-dimensional right-angled Artin groups

被引:7
|
作者
Bregman, Corey [1 ]
Clay, Matt [2 ]
机构
[1] Univ Southern Maine, Dept Math, Portland, ME 04103 USA
[2] Univ Arkansas, Dept Math, Fayetteville, AR 72701 USA
关键词
MANIFOLDS;
D O I
10.1007/s00208-021-02211-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a free-by-cyclic group or a 2-dimensional right-angled Artin group. We provide an algebraic and a geometric characterization for when each aspherical simplicial complex with fundamental group isomorphic to G has minimal volume entropy equal to 0. In the nonvanishing case, we provide a positive lower bound to the minimal volume entropy of an aspherical simplicial complex of minimal dimension for these two classes of groups. Our results rely upon a criterion for the vanishing of the minimal volume entropy for 2-dimensional groups with uniform uniform exponential growth. This criterion is shown by analyzing the fiber pi(1)-growth collapse and non-collapsing assumptions of Babenko-Sabourau (Minimal volume entropy and fiber growth, arXiv:2102.04551, 2020).
引用
收藏
页码:1253 / 1281
页数:29
相关论文
共 50 条
  • [21] Embeddings of right-angled Artin groups into higher-dimensional Thompson groups
    Kato, Motoko
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (08)
  • [22] Divergence and quasimorphisms of right-angled Artin groups
    Behrstock, Jason
    Charney, Ruth
    MATHEMATISCHE ANNALEN, 2012, 352 (02) : 339 - 356
  • [23] Limit Groups over Coherent Right-Angled Artin Groups Are Cyclic Subgroup Separable
    Fruchter, Jonathan
    MICHIGAN MATHEMATICAL JOURNAL, 2023, 73 (05) : 909 - 923
  • [24] Pushing fillings in right-angled Artin groups
    Abrams, Aaron
    Brady, Noel
    Dani, Pallavi
    Duchin, Moon
    Young, Robert
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 : 663 - 688
  • [25] Divergence and quasimorphisms of right-angled Artin groups
    Jason Behrstock
    Ruth Charney
    Mathematische Annalen, 2012, 352 : 339 - 356
  • [26] Algebraic invariants for right-angled Artin groups
    Stefan Papadima
    Alexander I. Suciu
    Mathematische Annalen, 2006, 334 : 533 - 555
  • [27] Zassenhaus filtrations and right-angled Artin groups
    Tra, Nguyen Thi
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [28] Abelian splittings of right-angled Artin groups
    Groves, Daniel
    Hull, Michael
    HYPERBOLIC GEOMETRY AND GEOMETRIC GROUP THEORY, 2017, 73 : 159 - 165
  • [29] On the profinite topology of right-angled Artin groups
    Metaftsis, V.
    Raptis, E.
    JOURNAL OF ALGEBRA, 2008, 320 (03) : 1174 - 1181
  • [30] Surface subgroups of right-angled Artin groups
    Crisp, John
    Sageev, Michah
    Sapir, Mark
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (03) : 443 - 491