Minimal volume entropy of free-by-cyclic groups and 2-dimensional right-angled Artin groups

被引:7
|
作者
Bregman, Corey [1 ]
Clay, Matt [2 ]
机构
[1] Univ Southern Maine, Dept Math, Portland, ME 04103 USA
[2] Univ Arkansas, Dept Math, Fayetteville, AR 72701 USA
关键词
MANIFOLDS;
D O I
10.1007/s00208-021-02211-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a free-by-cyclic group or a 2-dimensional right-angled Artin group. We provide an algebraic and a geometric characterization for when each aspherical simplicial complex with fundamental group isomorphic to G has minimal volume entropy equal to 0. In the nonvanishing case, we provide a positive lower bound to the minimal volume entropy of an aspherical simplicial complex of minimal dimension for these two classes of groups. Our results rely upon a criterion for the vanishing of the minimal volume entropy for 2-dimensional groups with uniform uniform exponential growth. This criterion is shown by analyzing the fiber pi(1)-growth collapse and non-collapsing assumptions of Babenko-Sabourau (Minimal volume entropy and fiber growth, arXiv:2102.04551, 2020).
引用
收藏
页码:1253 / 1281
页数:29
相关论文
共 50 条
  • [1] Minimal volume entropy of free-by-cyclic groups and 2-dimensional right-angled Artin groups
    Corey Bregman
    Matt Clay
    Mathematische Annalen, 2021, 381 : 1253 - 1281
  • [2] Automorphisms of 2-dimensional right-angled Artin groups
    Charney, Ruth
    Crisp, John
    Vogtmann, Karen
    GEOMETRY & TOPOLOGY, 2007, 11 : 2227 - 2264
  • [3] Length functions of 2-dimensional right-angled Artin groups
    Ruth Charney
    Max Margolis
    Geometriae Dedicata, 2013, 166 : 31 - 45
  • [4] Length functions of 2-dimensional right-angled Artin groups
    Charney, Ruth
    Margolis, Max
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 31 - 45
  • [5] Right-angled Artin groups are commensurable with right-angled Coxeter groups
    Davis, MW
    Januszkiewicz, T
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (03) : 229 - 235
  • [6] Right-angled Artin subgroups of right-angled Coxeter and Artin groups
    Dani, Pallavi
    Levcovitz, Ivan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (02): : 755 - 802
  • [7] On braid groups and right-angled Artin groups
    Francis Connolly
    Margaret Doig
    Geometriae Dedicata, 2014, 172 : 179 - 190
  • [8] On braid groups and right-angled Artin groups
    Connolly, Francis
    Doig, Margaret
    GEOMETRIAE DEDICATA, 2014, 172 (01) : 179 - 190
  • [9] AUTOMORPHISM GROUPS OF RIGHT-ANGLED ARTIN GROUPS
    Charney, Ruth
    Vogtmann, Karen
    ENSEIGNEMENT MATHEMATIQUE, 2008, 54 (1-2): : 71 - 72
  • [10] Right-angled Artin subgroups of Artin groups
    Jankiewicz, Kasia
    Schreve, Kevin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (02): : 818 - 854