The Possibility of Measuring Electron Density of Plasma at Atmospheric Pressure by a Microwave Cavity Resonance Spectroscopy

被引:6
|
作者
Li, Jinming [1 ]
Astafiev, Aleksandr M. [2 ,3 ]
Kudryavtsev, Anatoly A. [1 ,2 ]
Yuan, Chengxun [1 ]
Zhou, Zhongxiang [1 ]
Wang, Xiaoou [1 ]
机构
[1] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[2] St Petersburg State Univ, Phys Dept, St Petersburg 198504, Russia
[3] St Petersburg Electrotech Univ LETI, Phys Dept, St Petersburg 197376, Russia
基金
中国国家自然科学基金;
关键词
Plasmas; Discharges (electric); Atmospheric measurements; Plasma measurements; Microwave theory and techniques; Microwave measurement; Microwave antennas; Atmospheric pressure gas discharge; collision frequency; complex permittivity; electron density; microwave cavity resonator; quality factor; resonant frequency; transverse electric (TE) mode; POLYETHYLENE TEREPHTHALATE; SURFACE-TREATMENT; DISCHARGES; SCATTERING;
D O I
10.1109/TPS.2021.3050110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electron density of the nonstationary atmospheric pressure discharge in a helium flow is estimated using microwave cavity resonance spectroscopy. For this, a measurement scheme was developed based on a spectrum analyzer and a cylindrical resonator with the first three transverse electric (TE) eigenmodes in the range of 1-1.5 GHz. The main working mode was the TE TE112 mode, which made it possible to place the high-frequency measuring and discharge power supply circuits in the most optimal geometry. By measuring the eigenfrequency shift of this mode and its Q factor, gas-discharge plasma parameters were calculated using the well-known perturbation theory. The results are in good agreement with the known data from the literature. This method was additionally tested on a glass rod and a thin low-pressure gas discharge tube.
引用
收藏
页码:1001 / 1008
页数:8
相关论文
共 50 条
  • [21] Optical emission spectroscopy for simultaneous measurement of plasma electron density and temperature in a low-pressure microwave induced plasma
    Konjevic, N.
    Jovicevic, S.
    Ivkovic, M.
    PHYSICS OF PLASMAS, 2009, 16 (10)
  • [22] MICROWAVE CAVITY FOR ATMOSPHERIC-PRESSURE PLASMAS
    MOREAU, G
    DESSAUX, O
    GOUDMAND, P
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1983, 16 (12): : 1160 - 1161
  • [23] Cavity ring-down spectroscopy for atmospheric pressure plasma jet analysis
    Zaplotnik, Rok
    Biscan, Marijan
    Krstulovic, Niksa
    Popovic, Dean
    Milosevic, Slobodan
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (05):
  • [24] Microwave cavity resonance spectroscopy of ultracold plasmas
    van Ninhuijs, M. A. W.
    Daamen, K. A.
    Franssen, J. G. H.
    Conway, J.
    Platier, B.
    Beckers, J.
    Luiten, O. J.
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [25] ESTIMATE OF ELECTRON-DENSITY IN A MICROWAVE-DISCHARGE AT ATMOSPHERIC-PRESSURE
    SOTNIKOV, VN
    NAZAROV, VN
    PLYUSNIN, VI
    MARUSIN, VV
    HIGH TEMPERATURE, 1976, 14 (02) : 344 - 346
  • [26] Atmospheric pressure nitrogen microwave plasma
    Lestinska, Lenka
    Foltin, Viktor
    Machala, Zdenko
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (04) : 962 - 963
  • [27] Microwave Plasma Torch at Atmospheric Pressure
    Schulz, Andreas
    Leins, Martina
    Kopecki, Jochen
    Walker, Matthias
    Stroth, Ulrich
    VAKUUM IN FORSCHUNG UND PRAXIS, 2011, 23 (06) : 6 - 11
  • [28] ENERGY DENSITY DEPENDENCE OF HYDROGEN COMBUSTION EFFICIENCY IN ATMOSPHERIC PRESSURE MICROWAVE PLASMA
    Yoshida, T.
    Ezumi, N.
    Sawada, K.
    Tanaka, Y.
    Tanaka, M.
    Nishimura, K.
    FUSION SCIENCE AND TECHNOLOGY, 2015, 67 (03) : 650 - 653
  • [29] Comparative Study on Excitation Temperature, Electron Temperature and Electron Density in an Atmospheric Argon Microwave Plasma
    Wang Zhong
    Zhang Gui-Xin
    Liu Cheng
    Jia Zhi-Dong
    CHINESE PHYSICS LETTERS, 2014, 31 (05)
  • [30] Electron density and electron temperature measurements in an atmospheric pressure plasma interacting with liquid anode
    Yue, Yuanfu
    Bruggeman, Peter J.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (12):