Reconstruction of the microalga Nannochloropsis salina genome-scale metabolic model with applications to lipid production

被引:40
作者
Loira, Nicolas [1 ,2 ]
Mendoza, Sebastian [1 ,2 ]
Paz Cortes, Maria [1 ,2 ,4 ]
Rojas, Natalia [2 ]
Travisany, Dante [1 ,2 ]
Di Genova, Alex [1 ,2 ]
Gajardo, Natalia [3 ]
Ehrenfeld, Nicole [3 ]
Maass, Alejandro [1 ,2 ]
机构
[1] Univ Chile, Ctr Math Modeling, Math, Beauchef 851,7th Floor, Santiago, Chile
[2] Univ Chile, Ctr Genome Regulat Fondap 15090007, Blanco Encalada 2085, Santiago, Chile
[3] Univ Santo Tomas, Ctr Invest Austral Biotech, Ave Ejercito 146, Santiago, Chile
[4] Univ Adolfo Ibanez, Diagonal Torres 2640, Santiago, Chile
关键词
Genome-scale Metabolic model; Nannochloropsis salina; TAG; Microalg ae; FLUX BALANCE ANALYSIS; ESCHERICHIA-COLI; PHAEODACTYLUM-TRICORNUTUM; SACCHAROMYCES-CEREVISIAE; CHLORELLA-VULGARIS; GROWTH; BIOSYNTHESIS; PATHWAYS; NETWORK; GENES;
D O I
10.1186/s12918-017-0441-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Nannochloropsis salina (= Eustigmatophyceae) is a marine microalga which has become a biotechnological target because of its high capacity to produce polyunsaturated fatty acids and triacylglycerols. It has been used as a source of biofuel, pigments and food supplements, like Omega 3. Only some Nannochloropsis species have been sequenced, but none of them benefit from a genome-scale metabolic model (GSMM), able to predict its metabolic capabilities. Results: We present iNS934, the first GSMM for N. salina, including 2345 reactions, 934 genes and an exhaustive description of lipid and nitrogen metabolism. iNS934 has a 90% of accuracy when making simple growth/no-growth predictions and has a 15% error rate in predicting growth rates in different experimental conditions. Moreover, iNS934 allowed us to propose 82 different knockout strategies for strain optimization of triacylglycerols. Conclusions: iNS934 provides a powerful tool for metabolic improvement, allowing predictions and simulations of N. salina metabolism under different media and genetic conditions. It also provides a systemic view of N. salina metabolism, potentially guiding research and providing context to -omics data.
引用
收藏
页数:17
相关论文
共 100 条
[31]   Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network [J].
Förster, J ;
Famili, I ;
Fu, P ;
Palsson, BO ;
Nielsen, J .
GENOME RESEARCH, 2003, 13 (02) :244-253
[32]   Microalgae:: a green source of renewable H2 [J].
Ghirardi, ML ;
Zhang, JP ;
Lee, JW ;
Flynn, T ;
Seibert, M ;
Greenbaum, E ;
Melis, A .
TRENDS IN BIOTECHNOLOGY, 2000, 18 (12) :506-511
[33]   Lipid productivity as a key characteristic for choosing algal species for biodiesel production [J].
Griffiths, Melinda J. ;
Harrison, Susan T. L. .
JOURNAL OF APPLIED PHYCOLOGY, 2009, 21 (05) :493-507
[34]   Hypertension prevention: from nutrients to (fortified) foods to dietary patterns. Focus on fatty acids [J].
Grynberg, A .
JOURNAL OF HUMAN HYPERTENSION, 2005, 19 :S25-S33
[35]  
Guillard R. R. L., 1975, CULTURE MARINE INVER, P29
[36]   A microplate technique to quantify nutrients (NO2- NO3-NH4+ and PO43-) in seawater [J].
Hernández-López, J ;
Vargas-Albores, F .
AQUACULTURE RESEARCH, 2003, 34 (13) :1201-1204
[37]   Identification of genome-scale metabolic network models using experimentally measured flux profiles [J].
Herrgard, Markus J. ;
Fong, Stephen S. ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (07) :676-686
[38]  
Hii Y.S., 2011, Journal of Sustainability Science and Management, V6, P60
[39]   Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances [J].
Hu, Qiang ;
Sommerfeld, Milton ;
Jarvis, Eric ;
Ghirardi, Maria ;
Posewitz, Matthew ;
Seibert, Michael ;
Darzins, Al .
PLANT JOURNAL, 2008, 54 (04) :621-639
[40]   Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae [J].
Huertas, E ;
Montero, O ;
Lubián, LM .
AQUACULTURAL ENGINEERING, 2000, 22 (03) :181-197