Notes on the space-time decay rate of the Stokes flows in the half space

被引:3
作者
Chang, Tongkeun [1 ]
Jin, Bum Ja [2 ]
机构
[1] Yonsei Univ, CMAC Res Ctr, Seoul 03722, South Korea
[2] Mokpo Natl Univ, Dept Math Educ, Muan Gun 58554, South Korea
关键词
ASYMPTOTIC-BEHAVIOR; EQUATIONS; SYSTEM; L-1;
D O I
10.1016/j.jde.2017.02.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a Stokes equations in the half space R-+(n), n >= 2 has been considered. We derive a rapid decay rate of the Stokes flow in space and time when the initial data decreases fast enough and satisfies some additional condition. Initial data decreasing too slowly to be vertical bar x vertical bar h is an element of L-1 (R-+(n)) are also considered. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:240 / 263
页数:24
相关论文
共 45 条
[41]  
Shimizu Y., 1999, Funkcial. Ekvac, V42, P291
[42]  
Solonnikov V. A., 2003, J MATH SCI, V114, P1726, DOI DOI 10.1023/A:1022317029111
[43]  
Solonnikov V A., 1973, ZAPISKI NAUCNYH SEMI, V38, P153
[44]   On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator [J].
Solonnikov, VA .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :331-365
[45]   A SOLUTION FORMULA FOR THE STOKES EQUATION IN RN+ [J].
UKAI, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (05) :611-621