Convergence Analysis of Asymptotical Regularization and Runge-Kutta Integrators for Linear Inverse Problems under Variational Source Conditions

被引:7
作者
Zhao, Yubin [1 ,2 ]
Mathe, Peter [3 ]
Lu, Shuai [1 ,2 ]
机构
[1] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Weierstr Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
来源
CSIAM TRANSACTIONS ON APPLIED MATHEMATICS | 2020年 / 1卷 / 04期
关键词
Linear ill-posed problems; regularization theory; variational source conditions; asymptotical regularization; Runge-Kutta integrators; ILL-POSED PROBLEMS; TIKHONOV REGULARIZATION; RATES; CONVERSE;
D O I
10.4208/csiam-am.2020-0022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational source conditions are known to be a versatile tool for establishing error bounds, and these recently attract much attention. We establish sufficient conditions for general spectral regularization methods which yield convergence rates under variational source conditions. Specifically, we revisit the asymptotical regularization, Runge-Kutta integrators, and verify that these methods satisfy the proposed conditions. Numerical examples confirm the theoretical findings.
引用
收藏
页码:693 / 714
页数:22
相关论文
共 29 条
[1]   Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces [J].
Albani, V. ;
Elbau, P. ;
de Hoop, M. V. ;
Scherzer, O. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (05) :521-540
[2]   Generalized Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces [J].
Andreev, Roman ;
Elbau, Peter ;
de Hoop, Maarten V. ;
Qiu, Lingyun ;
Scherzer, Otmar .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (05) :549-566
[3]   Iterative Runge-Kutta-type methods for nonlinear ill-posed problems [J].
Boeckmann, C. ;
Pornsawad, P. .
INVERSE PROBLEMS, 2008, 24 (02)
[4]  
Bot R., 2018, ARXIV181209343
[5]   One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization [J].
Cheng, J ;
Yamamoto, M .
INVERSE PROBLEMS, 2000, 16 (04) :L31-L38
[6]   The index function and Tikhonov regularization for ill-posed problems* [J].
Cheng, Jin ;
Hofmann, Bernd ;
Lu, Shuai .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 265 :110-119
[7]   Local analysis of inverse problems: Holder stability and iterative reconstruction [J].
de Hoop, Maarten V. ;
Qiu, Lingyun ;
Scherzer, Otmar .
INVERSE PROBLEMS, 2012, 28 (04)
[8]  
Delves LM., 1974, Numerical Solution of Integral Equations
[9]  
Engl H. W., 1996, REGULARIZATION INVER, V375
[10]  
Flemming J., 2011, THESIS CHEMNITZ U TE