A dynamic subspace model for predicting burn-through point in iron sintering process

被引:17
作者
Cao, Weihua [1 ,2 ]
Zhang, Yongyue [3 ]
She, Jinhua [1 ,2 ,4 ]
Wu, Min [1 ,2 ]
Cao, Yuan [3 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan, Hubei, Peoples R China
[3] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[4] Tokyo Univ Technol, Sch Engn, Tokyo 1920982, Japan
基金
中国国家自然科学基金;
关键词
Burning-through point; Subspace modeling method; Dynamic model; Sintering process; CONTROL TECHNOLOGY; IDENTIFICATION; OPTIMIZATION; SYSTEMS;
D O I
10.1016/j.ins.2018.06.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a dynamic modeling method for predicting the exhaust-gas temperature (EGT) of the burn-through point (BTP) in an iron sintering process. First, a subspace modeling method is used to build a steady-state subspace model (SSSM) for the EGT at a steady state. Then, a dynamic subspace model (DSM) that is driven by the errors of the SSSMs is developed to improve the accuracy of the EGT prediction in a continuous process. Finally, a grid search dynamic subspace model (GSDSM) is established to find the best parameters for each SSSM in the DSM. Verification results show that the GSDSM yields a predicted EGT with a high precision, which can be implemented in a predicting controller an actual sintering process. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 28 条