A dynamic subspace model for predicting burn-through point in iron sintering process

被引:22
作者
Cao, Weihua [1 ,2 ]
Zhang, Yongyue [3 ]
She, Jinhua [1 ,2 ,4 ]
Wu, Min [1 ,2 ]
Cao, Yuan [3 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan, Hubei, Peoples R China
[3] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[4] Tokyo Univ Technol, Sch Engn, Tokyo 1920982, Japan
基金
中国国家自然科学基金;
关键词
Burning-through point; Subspace modeling method; Dynamic model; Sintering process; CONTROL TECHNOLOGY; IDENTIFICATION; OPTIMIZATION; SYSTEMS;
D O I
10.1016/j.ins.2018.06.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a dynamic modeling method for predicting the exhaust-gas temperature (EGT) of the burn-through point (BTP) in an iron sintering process. First, a subspace modeling method is used to build a steady-state subspace model (SSSM) for the EGT at a steady state. Then, a dynamic subspace model (DSM) that is driven by the errors of the SSSMs is developed to improve the accuracy of the EGT prediction in a continuous process. Finally, a grid search dynamic subspace model (GSDSM) is established to find the best parameters for each SSSM in the DSM. Verification results show that the GSDSM yields a predicted EGT with a high precision, which can be implemented in a predicting controller an actual sintering process. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 28 条
[1]   Improved subspace identification with prior information using constrained least squares [J].
Alenany, A. ;
Shang, H. ;
Soliman, M. ;
Ziedan, I. .
IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (13) :1568-1576
[2]   Experience in industrial plant model development using large-scale artificial neural networks [J].
Boger, Z .
INFORMATION SCIENCES, 1997, 101 (3-4) :203-216
[3]   Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach [J].
Chiuso, Alessandro ;
Muradore, Riccardo ;
Marchetti, Enrico .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2010, 18 (03) :705-713
[4]   Recursive Predictor-Based Subspace Identification With Application to the Real-Time Closed-Loop Tracking of Flutter [J].
Houtzager, Ivo ;
van Wingerden, Jan-Willem ;
Verhaegen, Michel .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2012, 20 (04) :934-949
[5]  
Jamaludin IW, 2013, 2013 IEEE 9TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS (CSPA), P140, DOI 10.1109/CSPA.2013.6530030
[6]   Focus on: Subspace-based Identification and Its Applications [J].
Johansson, Rolf .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2009, 23 (12) :1051-1052
[7]   Realization of stochastic systems with exogenous inputs and subspace identification methods [J].
Katayama, T ;
Picci, G .
AUTOMATICA, 1999, 35 (10) :1635-1652
[8]  
Li MH, 2006, 2006 1ST IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-3, P857
[9]  
[李幼凤 LI Youfeng], 2006, [化工学报, Journal of Chemical Industry and Engineering (China)], V57, P473
[10]   Recursive subspace identification of linear and non-linear Wiener state-space models [J].
Lovera, M ;
Gustafsson, T ;
Verhaegen, M .
AUTOMATICA, 2000, 36 (11) :1639-1650