Aeroelastic Analysis of a Single Element Composite Wing in Ground Effect Using Fluid-Structure Interaction

被引:6
作者
Bang, Chris Sungkyun [1 ]
Rana, Zeeshan A. [2 ]
Konozsy, Laszlo [2 ]
Rodriguez, Veronica Marchante [1 ]
Temple, Clive [1 ]
机构
[1] Cranfield Univ, Adv Vehicle Engn Ctr, Coll Rd, Cranfield MK43 0AL, Beds, England
[2] Cranfield Univ, Ctr Computat Engn Sci, Coll Rd, Cranfield MK43 0AL, Beds, England
来源
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME | 2022年 / 144卷 / 04期
关键词
fluid-structure interaction (FSI); aeroelasticity; ground effect; composite structure; two-way coupling; structural deformation; MODEL; FLUTTER; CFD;
D O I
10.1115/1.4053089
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work focuses on an advanced coupling of computational fluid dynamics (CFD) and structural finite element analysis (FEA) on the aeroelastic behavior of a single element inverted composite wing with the novelty of including the ground effect. The front wing of the formula one (F1) car can become flexible under the fluid loading due to elastic characteristics of composite materials, resulting in changing the flow field and eventually altering overall aerodynamics. The purpose of this study is to setup an accurate fluid-structure interaction (FSI) modeling framework and to assess the influence of elastic behavior of the wing in ground effect on the aerodynamic and structural performance. Different turbulence models are studied to capture better the changes of the flow field and variation of ride heights are considered to investigate the influence of ground effect on aerodynamic phenomena. A steady-state two-way coupling method is exploited to run the FSI numerical simulations using ansys, which enables simultaneous calculation by coupling CFD with FEA. The effect of various composite structures on the wing performance is extensively studied concerning structure configuration, ply orientation, and core materials. The numerical results generally represent good agreement with the experimental data, however, discrepancy, especially in the aerodynamic force, is presented. This may be a consequence of a less effective angle of attack due to the wing deflection and deterioration of vortex-induced effect. For the structural analysis, the woven structure gives rise to more stable structural deflection than the unidirectional structure despite the associated weight penalty.
引用
收藏
页数:13
相关论文
共 50 条
[1]  
Agathangelou Ben., 1998, SAE TECHNICAL PAPER, DOI DOI 10.4271/980399
[2]  
Andreassi L., 2004, 2004010444 SAE, DOI [10.4271/2004-01-0444, DOI 10.4271/2004-01-0444]
[3]  
[Anonymous], 1998, Verification and validation in computational science and engineering
[4]  
[Anonymous], 1995, 13 APPL AEROD C SAN
[5]  
ANSYS, 2018, ANS COMP LIB
[6]   Computational Aerodynamics Analysis of Non-Symmetric Multi-Element Wing in Ground Effect with Humpback Whale Flipper Tubercles [J].
Arrondeau, Benjamin ;
Rana, Zeeshan A. .
FLUIDS, 2020, 5 (04)
[7]  
Bagheri E., 2015, ENERGY EQUIP SYST, V3, P45
[8]  
Bungartz HJ, 2006, Fluid-structure interaction: modelling, simulation, optimization
[9]   Aerodynamic and Structural Design of a 2022 Formula One Front Wing Assembly [J].
Castro, Xabier ;
Rana, Zeeshan A. .
FLUIDS, 2020, 5 (04)
[10]   Numerical simulation of 3-D wing flutter with fully coupled fluid-structural interaction [J].
Chen, Xiangying ;
Zha, Ge-Cheng ;
Yang, Ming-Ta .
COMPUTERS & FLUIDS, 2007, 36 (05) :856-867