Towards real-time and real-life image classification and detection using CNN: a review of practical applications requirements, algorithms, hardware and current trends

被引:0
作者
Ilas, Mariana Eugenia [1 ]
Ilas, Constantin [1 ]
机构
[1] Univ Politehn Bucuresti, Dept Elect Telecom & IT, Bucharest, Romania
来源
2020 IEEE 26TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME 2020) | 2020年
关键词
CNN; real-time; real-life; power consumption; practical applications; detection; classification; inference time; complexity; hardware platforms; GPU; TPU; FPGA; ASIC; CONVOLUTIONAL NEURAL-NETWORKS; VIDEO SURVEILLANCE; COMPUTER VISION; DESIGN; SYSTEM;
D O I
10.1109/siitme50350.2020.9292253
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
CNN are already used in production applications in some areas, whereas for many real-life applications this is not possible yet, mainly because of speed and/ or power consumption limitations. In parallel, there are sustained efforts for simplifying CNN structure and for designing new processor architectures. In this paper we analyze the requirements of inference time and power consumption for a large variety of applications, running on all type of platforms, from edge devices to servers. We also review all hardware systems which can be used for CNN implementation, GPUs, TPUs, FPGA, prototype ASICs. Finally, we correlate the performance of these devices with the real-time and power requirements and the complexity of most popular CNN architectures. Thus, we determine what types of practical applications are currently possible, quantify the gaps for the others, and discuss how these gaps can be reduced.
引用
收藏
页码:225 / 233
页数:9
相关论文
共 83 条
[1]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[2]  
Ahamed H, 2018, 2018 INTERNATIONAL CONFERENCE ON ADVANCEMENT IN ELECTRICAL AND ELECTRONIC ENGINEERING (ICAEEE)
[3]  
Akçay S, 2016, IEEE IMAGE PROC, P1057, DOI 10.1109/ICIP.2016.7532519
[4]  
Akkas S, 2019, IEEE INT CONF BIG DA, P5667, DOI [10.1109/bigdata47090.2019.9005689, 10.1109/BigData47090.2019.9005689]
[5]  
Alhindi TJ, 2018, IEEE IJCNN
[6]  
Alom M.Z., 2018, The history began from AlexNet: a comprehensive survey on deep learning approaches
[7]   Low-Power Computer Vision: Status, Challenges, and Opportunities [J].
Alyamkin, Sergei ;
Ardi, Matthew ;
Berg, Alexander C. ;
Brighton, Achille ;
Chen, Bo ;
Chen, Yiran ;
Cheng, Hsin-Pai ;
Fan, Zichen ;
Feng, Chen ;
Fu, Bo ;
Gauen, Kent ;
Goel, Abhinav ;
Goncharenko, Alexander ;
Guo, Xuyang ;
Ha, Soonhoi ;
Howard, Andrew ;
Hu, Xiao ;
Huang, Yuanjun ;
Kim, Jaeyoun ;
Ko, Jong Gook ;
Kondratyev, Alexander ;
Lee, Junhyeok ;
Lee, Seungjae ;
Lee, Suwoong ;
Li, Zichao ;
Liang, Zhiyu ;
Liu, Juzheng ;
Liu, Xin ;
Lu, Yang ;
Lu, Yung-Hsiang ;
Malik, Deeptanshu ;
Nguyen, Hong Hanh ;
Park, Eunbyung ;
Repin, Denis ;
Shen, Liang ;
Sheng, Tao ;
Sun, Fei ;
Svitov, David ;
Thiruvathukal, George K. ;
Zhang, Baiwu ;
Zhang, Jingchi ;
Zhang, Xiaopeng ;
Zhuo, Shaojie ;
Kang, D. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2019, 9 (02) :411-421
[8]  
[Anonymous], 2018, IEEE T INF FOREN SEC, DOI DOI 10.1109/TIFS.2018.2812196
[9]  
[Anonymous], 2016, IEEE T EMERGING TOPI
[10]  
[Anonymous], 2016, P 24 ACM INT C MULT, DOI 10.1145/2964284.2967280