The Combined Atmospheric Photochemistry and Ion Tracing code: Reproducing the Viking Lander results and initial outflow results

被引:24
作者
Andersson, L. [1 ]
Ergun, R. E. [1 ,2 ]
Stewart, A. I. F. [1 ]
机构
[1] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA
[2] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80302 USA
关键词
Mars; Ionospheres; SOLAR-WIND INTERACTION; MAGNETIC-FIELD; MARS; PLASMA; ESCAPE; IONOSPHERE; DAYSIDE; ACCELERATION; TEMPERATURES; DEPOSITION;
D O I
10.1016/j.icarus.2009.07.009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A Combined Atmospheric Photochemistry and Ion Tracing code (CAPIT) has been developed to explore ion loss into space at Mars. The CAPIT code includes the major photochemical reactions of Mars' ionosphere, ion tracing in the presence of magnetic fields, and plasma wave heating of ions. In particular, we examine whether O+ escape from the day-side ionosphere is limited by ion production (UV input) or by external energy input to the ions. To verify the code, it is demonstrated that the CAPIT solutions reproduce the Viking 1 Lander's ion density and temperature profiles. Using Viking 1 Lander conditions as a baseline, ion outflow rates are examined as function of solar wind energy input via plasma waves and UV ionization rates. The O+ outflow rates predicted by the simulation are comparable to the outflow rates estimated by observation. The results indicate that plasma waves are a viable source of energy to O+ ions and suggest that present-day O+ outflow rates at Mars are source limited by photochemical production (UV input) during periods of strong energy input (plasma wave activity), but otherwise regulated by both UV input and energy input. These results imply that ion heating by plasma waves can influence the present-day loss of O+. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:120 / 129
页数:10
相关论文
共 48 条
[1]  
ACUNA MH, 2001, J GEOPHYS RES, V106, P23419
[2]   Theories and observations of ion energization and outflow in the high latitude magnetosphere [J].
Andre, M ;
Yau, A .
SPACE SCIENCE REVIEWS, 1997, 80 (1-2) :27-48
[3]   Martian atmospheric erosion rates [J].
Barabash, Stas ;
Fedorov, Andrei ;
Lundin, Rickard ;
Sauvaud, Jean-Andre .
SCIENCE, 2007, 315 (5811) :501-503
[4]  
Barth C.A., 1985, The Photochemistry of the Atmosphere of Mars, The Photochemistry of Atmospheres, P337
[5]   Discovery of an aurora on Mars [J].
Bertaux, JL ;
Leblanc, F ;
Witasse, O ;
Quemerais, E ;
Lilensten, J ;
Stern, SA ;
Sandel, B ;
Korablev, O .
NATURE, 2005, 435 (7043) :790-794
[6]  
Birdsall C K., 2018, Plasma Physics via Computer Simulation
[7]   On the origin of aurorae on Mars -: art. no. L01201 [J].
Brain, DA ;
Halekas, JS ;
Peticolas, LM ;
Lin, RP ;
Luhmann, JG ;
Mitchell, DL ;
Delory, GT ;
Bougher, SW ;
Acuña, MH ;
Réme, H .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (01)
[8]   Martian magnetic morphology:: Contributions from the solar wind and crust -: art. no. 1424 [J].
Brain, DA ;
Bagenal, F ;
Acuña, MH ;
Connerney, JEP .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A12)
[9]   Solar wind proton deposition into the Martian atmosphere [J].
Brecht, SH .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1997, 102 (A6) :11287-11294
[10]   The solar wind interaction with the martian ionosphere/atmosphere [J].
Brecht, Stephen H. ;
Ledvina, Stephen A. .
SPACE SCIENCE REVIEWS, 2006, 126 (1-4) :15-38