Multiobjective optimal antenna design based on volumetric material optimization

被引:34
作者
Koulouridis, Stavros [1 ]
Psychoudakis, Dirnitris [1 ]
Volakis, John L. [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Electrosci Lab, Columbus, OH 43212 USA
关键词
Pareto surface font; printed conformal antennas; size shape and material optimization;
D O I
10.1109/TAP.2007.891551
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
There is growing interest for small antennas that concurrently have higher functionality and operability. Multiobjective optimization is an important tool in the design of such antennas since conflicting goals such as higher gain, increased bandwidth, and size reduction must be addressed simultaneously, In this paper, we present a novel optimization algorithm which permits full volumetric antenna design by combining genetic algorithms with a fast hybrid finite element-boundary integral method. To our knowledge, this is the first time that a full three dimensional antenna design is pursued using concurrent shape, size, metallization as well as dielectric and magnetic material volume optimization. In comparison to previous optimization pursuits, our approach employs a wide-frequency sweep using a single geometry model, thus, enhancing speed, along with several discrete material choices for realizable optimized designs. The developed algorithm can be interpreted as a three dimensional Pareto optimization scheme and provides the designer with several choices among the best antennas, according to design goals and constraints. The final designs are associated with very thin (similar to 0.01 lambda) material substrates and yield as much as 15% bandwidth using a 0.1 lambda-0.4 lambda aperture subject to various gain and bandwidth requirements.
引用
收藏
页码:594 / 603
页数:10
相关论文
empty
未找到相关数据