Enhancing Few-Shot Image Classification with Unlabelled Examples

被引:52
作者
Bateni, Peyman [1 ,4 ,6 ]
Barber, Jarred [2 ,7 ]
van de Meent, Jan-Willem [3 ]
Wood, Frank [1 ,4 ,5 ]
机构
[1] Univ British Columbia, Vancouver, BC, Canada
[2] Amazon, Seattle, WA USA
[3] Northeastern Univ, Boston, MA 02115 USA
[4] Inverted AI, Vancouver, BC, Canada
[5] MILA, Montreal, PQ, Canada
[6] Beam AI, San Francisco, CA 94111 USA
[7] Charles River Analyt, Cambridge, MA USA
来源
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022) | 2022年
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/WACV51458.2022.00166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a transductive meta-learning method that uses unlabelled instances to improve few-shot image classification performance. Our approach combines a regularized Mahalanobis-distance-based soft k-means clustering procedure with a modified state of the art neural adaptive feature extractor to achieve improved test-time classification accuracy using unlabelled data. We evaluate our method on transductive few-shot learning tasks, in which the goal is to jointly predict labels for query (test) examples given a set of support (training) examples. We achieve state of the art performance on the Meta-Dataset, mini-ImageNet and tiered-ImageNet benchmarks. All trained models and code have been made publicly available.
引用
收藏
页码:1597 / 1606
页数:10
相关论文
共 59 条
[1]  
[Anonymous], 2016, NIPS, DOI [DOI 10.1145/3065386, DOI 10.2165/00129785-200404040-00005]
[2]  
[Anonymous], 2017, ABS170703141 CORR
[3]  
Banerjee A, 2005, J MACH LEARN RES, V6, P1705
[4]   Improved Few-Shot Visual Classification [J].
Bateni, Peyman ;
Goyal, Raghav ;
Masrani, Vaden ;
Wood, Frank ;
Sigal, Leonid .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :14481-14490
[5]  
Bellet A., 2013, SURVEY METRIC LEARNI
[6]   Describing Textures in the Wild [J].
Cimpoi, Mircea ;
Maji, Subhransu ;
Kokkinos, Iasonas ;
Mohamed, Sammy ;
Vedaldi, Andrea .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3606-3613
[7]  
Dolz J., 2020, SEMISUPERVISED FEW S
[8]  
Dvornik Nikita, 2020, SELECTING RELEVANT F
[9]  
Finn C, 2017, PR MACH LEARN RES, V70
[10]  
Garcia V., 2018, P ICLR