Alternate notions of N=1 superconformality and deformations of N=1 vertex superalgebras

被引:0
作者
Barron, Katrina [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
来源
VERTEX OPERATOR ALGEBRAS AND RELATED AREAS | 2009年 / 497卷
关键词
Superconformal field theory; Neveu-Schwarz Lie superalgebra; vertex operator superalgebra; OPERATOR SUPERALGEBRAS; ALGEBRAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider alternate notions of N=1 superconformality arising from scaling the odd (fermionic) variable by an even parameter. We show that this naturally gives rise to the notion of deformed N=1 vertex superalgebra. We formulate this notion using a Jacobi identity with odd formal variables in which one of a continuous family of deformed N=1 superconformal shifts is incorporated into the usual Jacobi identity for vertex superalgebras. This shift in the Jacobi identity dictates the form of the odd formal variable components of the vertex operators, and naturally gives rise to a representation of the Lie superalgebra isomorphic to the two-dimensional algebra. of supercierivations with basis consisting of the usual conformal operator and the deformed N=1 superconformal operator.
引用
收藏
页码:33 / 51
页数:19
相关论文
共 16 条
[1]  
[Anonymous], 1988, PURE APPL MATH
[2]   Superconformal change of variables for N=1 Neveu-Schwarz vertex operator superalgebras [J].
Barron, K .
JOURNAL OF ALGEBRA, 2004, 277 (02) :717-764
[3]   The notion of N=1 supergeometric vertex operator superalgebra and the isomorphism theorem [J].
Barron, K .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (04) :481-567
[4]  
Barron K, 2003, MEM AM MATH SOC, V162, P1
[5]  
BARRON K, 1996, THESIS RUTGERS U
[6]  
BARRON K, COMM ALG IN PRESS
[7]  
BARRON K, AXIOMATIC ASPECTS N
[8]  
BARRON K, 2000, P INT C REPR THEOR, P9
[9]  
BARRON K, 1996, INT MATH RES NOTICES, V9, P409
[10]   SUPER RIEMANN SURFACES - UNIFORMIZATION AND TEICHMULLER THEORY [J].
CRANE, L ;
RABIN, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 113 (04) :601-623