Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives

被引:62
作者
Abreu, Soraia C. [1 ,2 ]
Lopes-Pacheco, Miqueias [3 ]
Weiss, Daniel J. [4 ]
Rocco, Patricia R. M. [1 ,2 ]
机构
[1] Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil
[2] Natl Inst Sci & Technol Regenerat Med, Rio De Janeiro, Brazil
[3] Univ Lisbon, Fac Sci, Biosyst & Integrat Sci Inst, Lisbon, Portugal
[4] Univ Vermont Lamer, Coll Med, Dept Med, Burlington, VT USA
关键词
biomarkers; cell therapy; extracellular vesicles; inflammation; remodeling; respiratory disease; animal models;
D O I
10.3389/fcell.2021.600711
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Extracellular vesicles (EVs) have emerged as a potential therapy for several diseases. These plasma membrane-derived fragments are released constitutively by virtually all cell types-including mesenchymal stromal cells (MSCs)-under stimulation or following cell-to-cell interaction, which leads to activation or inhibition of distinct signaling pathways. Based on their size, intracellular origin, and secretion pathway, EVs have been grouped into three main populations: exosomes, microvesicles (or microparticles), and apoptotic bodies. Several molecules can be found inside MSC-derived EVs, including proteins, lipids, mRNA, microRNAs, DNAs, as well as organelles that can be transferred to damaged recipient cells, thus contributing to the reparative process and promoting relevant anti-inflammatory/resolutive actions. Indeed, the paracrine/endocrine actions induced by MSC-derived EVs have demonstrated therapeutic potential to mitigate or even reverse tissue damage, thus raising interest in the regenerative medicine field, particularly for lung diseases. In this review, we summarize the main features of EVs and the current understanding of the mechanisms of action of MSC-derived EVs in several lung diseases, such as chronic obstructive pulmonary disease (COPD), pulmonary infections [including coronavirus disease 2019 (COVID-19)], asthma, acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and cystic fibrosis (CF), among others. Finally, we list a number of limitations associated with this therapeutic strategy that must be overcome in order to translate effective EV-based therapies into clinical practice.
引用
收藏
页数:18
相关论文
共 194 条
[1]   Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma [J].
Abreu, Soraia C. ;
Xisto, Debora G. ;
de Oliveira, Taina B. ;
Blanco, Natalia G. ;
de Castro, Ligia Lins ;
Kitoko, Jamil Zola ;
Olsen, Priscilla C. ;
Lopes-Pacheco, Miqueias ;
Morales, Marcelo M. ;
Weiss, Daniel J. ;
Rocco, Patricia R. M. .
STEM CELLS TRANSLATIONAL MEDICINE, 2019, 8 (03) :301-312
[2]   Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma [J].
Abreu, Soraia Carvalho ;
Lopes-Pacheco, Miqueias ;
da Silva, Adriana Lopes ;
Xisto, Debora Goncalves ;
de Oliveira, Taina Batista ;
Kitoko, Jamil Zola ;
de Castro, Ligia Lins ;
Amorim, Natalia Recardo ;
Martins, Vanessa ;
Silva, Luisa H. A. ;
Goncalves-de-Albuquerque, Cassiano Felippe ;
de Castro Faria-Neto, Hugo Caire ;
Olsen, Priscilla Christina ;
Weiss, Daniel Jay ;
Morales, Marcelo Marcos ;
Diaz, Bruno Lourenco ;
Macedo Rocco, Patricia Rieken .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[3]   Autologous bone marrow-derived mononuclear cell therapy in three patients with severe asthma [J].
Aguiar, Fabio S. ;
Melo, Andre S. ;
Araujo, Ana Maria S. ;
Cardoso, Alexandre P. ;
de Souza, Sergio Augusto L. ;
Lopes-Pacheco, Miqueias ;
Cruz, Fernanda F. ;
Xisto, Debora G. ;
Asensi, Karina D. ;
Faccioli, Lanuza ;
Salgado, Anna Beatriz S. ;
Landesmann, Maria Carolina P. P. ;
Goldenberg, Regina C. S. ;
Gutfilen, Bianca ;
Morales, Marcelo M. ;
Rocco, Patricia R. M. ;
Silva, Jose R. .
STEM CELL RESEARCH & THERAPY, 2020, 11 (01)
[4]   Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury [J].
Ahn, So Yoon ;
Park, Won Soon ;
Kim, Young Eun ;
Sung, Dong Kyung ;
Sung, Se In ;
Ahn, Jee Yin ;
Chang, Yun Sil .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2018, 50 :1-12
[5]   A Systematic Review of Preclinical Studies on the Therapeutic Potential of Mesenchymal Stromal Cell-Derived Microvesicles [J].
Akyurekli, Celine ;
Le, Yevgeniya ;
Richardson, Richard B. ;
Fergusson, Dean ;
Tay, Jason ;
Allan, David S. .
STEM CELL REVIEWS AND REPORTS, 2015, 11 (01) :150-160
[6]   Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice [J].
Aliotta, Jason M. ;
Pereira, Mandy ;
Wen, Sicheng ;
Dooner, Mark S. ;
Del Tatto, Michael ;
Papa, Elaine ;
Goldberg, Laura R. ;
Baird, Grayson L. ;
Ventetuolo, Corey E. ;
Quesenberry, Peter J. ;
Klinger, James R. .
CARDIOVASCULAR RESEARCH, 2016, 110 (03) :319-330
[7]   Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma [J].
Almqvist, Nina ;
Lonnqvist, Anna ;
Hultkrantz, Susanne ;
Rask, Carola ;
Telemo, Esbjorn .
IMMUNOLOGY, 2008, 125 (01) :21-27
[8]   Extracellular vesicles are the Trojan horses of viral infection [J].
Altan-Bonnet, Nihal .
CURRENT OPINION IN MICROBIOLOGY, 2016, 32 :77-81
[9]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[10]   The Regenerative Potential of Amniotic Fluid Stem Cell Extracellular Vesicles: Lessons Learned by Comparing Different Isolation Techniques [J].
Antounians, Lina ;
Tzanetakis, Areti ;
Pellerito, Ornella ;
Catania, Vincenzo D. ;
Sulistyo, Adrienne ;
Montalva, Louise ;
McVey, Mark J. ;
Zani, Augusto .
SCIENTIFIC REPORTS, 2019, 9 (1)