Existence and symmetry of positive solutions of an integral equation system

被引:4
作者
Huang, Xiaotao [1 ]
Li, Dongsheng [1 ]
Wang, Lihe [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Coll Sci, Xian 710049, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Moving spheres; Moving planes; System of integral equations; Symmetry and monotonicity; SEMILINEAR ELLIPTIC-EQUATIONS; FULLY NONLINEAR EQUATIONS; MOVING SPHERES; CLASSIFICATION; INEQUALITIES; THEOREMS; SOBOLEV; HARNACK;
D O I
10.1016/j.mcm.2010.05.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we investigate positive solutions of the following integral equation system in R(n) : {u(x) = integral(Rn) vertical bar x - y vertical bar(alpha-n) v(y)(p)dy, v(x) = integral(Rn) vertical bar x - y vertical bar(beta-n) u(y)(q)dy, where p, q > 1, 0 < alpha, beta < n. With the method of moving spheres, we show the existence and the exact form of its solution in the case p <= (n + alpha)/(n - beta), q <= (n + beta/(n - alpha); and with the method of moving planes, we prove the symmetry and monotonicity of its solution in the case 1/p+1 + 1/q+1 = n-alpha/2n+beta-alpha + n-beta/2n+alpha-beta. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:892 / 901
页数:10
相关论文
共 20 条
[1]  
Aleksandrov A.D., 1958, Vestnic Leningrad University., V13, P5
[2]  
Alexandrov A. D., 1958, AM MATH SOC TRANSL, V21, P412
[3]  
[Anonymous], 1981, ADV MATH SUPPL STUD
[4]  
Berestycki H., 1991, Bol. Soc. Bras. Mat, V22, P1, DOI DOI 10.1007/BF01244896
[5]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[6]   An a priori estimate for a fully nonlinear equation on four-manifolds [J].
Chang, SYA ;
Gursky, MJ ;
Yang, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :151-186
[7]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[8]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[9]   Classification of solutions for a system of integral equations [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) :59-65
[10]  
Chen WX, 2005, COMMUN PUR APPL ANAL, V4, P1