EXTENSIONS OF LIE SUPERALGEBRAS BY HEISENBERG LIE SUPERALGEBRAS

被引:2
作者
Bai, Wei [1 ]
Liu, Wende [1 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
关键词
extension; cohomology; Heisenberg Lie superalgebra; ALGEBRAS;
D O I
10.4064/cm7243-8-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study extensions of Lie superalgebras by Heisenberg Lie superalgebras over a field of characteristic p not equal 2. We prove that the equivalence classes of those extensions are parameterized by means of representations and 2-cohomology classes of two extensions by two related Abelian Lie superalgebras.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 15 条
[1]   Double extension of quadratic Lie superalgebras [J].
Benamor, H ;
Benayadi, S .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (01) :67-88
[2]  
Cartan H., 1956, Homological algebra
[3]  
Chen CH, 2013, IEEE INT WORKS GENET, P16, DOI 10.1109/GEFS.2013.6601050
[4]   HOPF-GALOIS EXTENSIONS FOR MONOIDAL HOM-HOPF ALGEBRAS [J].
Chen, Yuanyuan ;
Zhang, Liangyun .
COLLOQUIUM MATHEMATICUM, 2016, 143 (01) :127-147
[5]   Central extensions of Lie superalgebras [J].
Iohara, K ;
Koga, Y .
COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (01) :110-154
[6]   Extensions of the Neveu-Schwarz Lie Superalgebra [J].
Marcel, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (02) :291-306
[7]   Extension of the Virasoro and Neveu-Schwarz algebras and generalized Sturm-Liouville operators [J].
Marcel, P ;
Ovsienko, V ;
Roger, C .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 40 (01) :31-39
[8]  
Mikhalev A.V., 2000, CONT MATH, V264, P111
[9]  
Mikhalev A. V., 2002, SEM PETROVSK, V22, P261
[10]  
Musson I., 2012, SUPERALGEBRAS ENVELO