AFT model;
EM algorithm;
Hazard smoothing;
Joint model;
SURVIVAL;
D O I:
10.1080/03610918.2013.809099
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Joint likelihood approaches have been widely used to handle survival data with time-dependent covariates. In construction of the joint likelihood function for the accelerated failure time (AFT) model, the unspecified baseline hazard function is assumed to be a piecewise constant function in the literature. However, there are usually no close form formulas for the regression parameters, which require numerical methods in the EM iterations. The nonsmooth step function assumption leads to very spiky likelihood function which is very hard to find the globe maximum. Besides, due to nonsmoothness of the likelihood function, direct search methods are conducted for the maximization which are very inefficient and time consuming. To overcome the two disadvantages, we propose a kernel smooth pseudo-likelihood function to replace the nonsmooth step function assumption. The performance of the proposed method is evaluated by simulation studies. A case study of reproductive egg-laying data is provided to demonstrate the usefulness of the new approach.
机构:
Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
Li, Ning
Elashoff, Robert M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, Dept Biostat, Sch Publ Hlth, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
Elashoff, Robert M.
Li, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Biostat, Sch Publ Hlth, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Elashoff, Robert M.
Li, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Li, Gang
Li, Ning
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA