Diffusive time evolution of the Grad-Shafranov equation for a toroidal plasma

被引:1
|
作者
Montani, Giovanni [1 ,2 ]
Del Prete, Matteo [2 ]
Carlevaro, Nakia [1 ,3 ]
Cianfrani, Francesco [4 ]
机构
[1] ENEA, Fus & Nucl Safety Dept, Via E Fermi 45, I-00044 Rome, Italy
[2] Sapienza Univ Rome, Phys Dept, Ple Aldo Moro 5, I-00185 Rome, Italy
[3] CREATE Consortium, Via Claudio 21, I-80125 Naples, Italy
[4] Aix Marseille Univ, CNRS, PIIM, UMR7345, 58 Blvd Charles Livon, F-13007 Marseille, France
关键词
plasma confinement; plasma dynamics; CLASSICAL DIFFUSION; RESISTIVE EVOLUTION; TOKAMAK;
D O I
10.1017/S002237782100057X
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe the evolution of a plasma equilibrium having a toroidal topology in the presence of constant electric resistivity. After outlining the main analytical properties of the solution, we illustrate its physical implications by reproducing the essential features of a scenario for the upcoming Italian experiment Divertor Tokamak Test Facility, with a good degree of accuracy. Although we find the resistive diffusion time scale to be of the order of 10(4) s, we observe a macroscopic change in the plasma volume on a time scale of 10(2) s, comparable to the foreseen duration of the plasma discharge by design. In the final part of the work, we compare our self-consistent solution to the more common Solov'ev one, and to a family of nonlinear configurations.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] On soliton-like solutions of the Grad-Shafranov equation
    Shukla, P.K.
    Stenflo, L.
    Pokhotelov, O.A.
    Physica Scripta T, 2005, T116
  • [32] Solution of Grad-Shafranov equation by the method of fundamental solutions
    Nath, D.
    Kalra, M.S.
    Journal of Plasma Physics, 2014, 755
  • [33] FINITE-DIFFERENCE SOLUTION OF GRAD-SHAFRANOV EQUATION
    REUSCH, MF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1278 - 1278
  • [34] Solution of Grad-Shafranov equation by the method of fundamental solutions
    Nath, D. (dnath@iitk.ac.in), 1600, Cambridge University Press (80):
  • [35] A generalized Grad-Shafranov equation with plasma flow under a conformal coordinate transformation
    Kuiroukidis, A.
    Kaltsas, D.
    Throumoulopoulos, G. N.
    PHYSICS OF PLASMAS, 2018, 25 (09)
  • [36] The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications
    Hu, Qiang
    Linton, Mark G.
    Wood, Brian E.
    Riley, Pete
    Nieves-Chinchilla, Teresa
    SOLAR PHYSICS, 2017, 292 (11) : 1 - 17
  • [37] Grad-Shafranov equilibria with negative core toroidal current in tokamak plasmas
    Rodrigues, P
    Bizarro, JPS
    PHYSICAL REVIEW LETTERS, 2005, 95 (01)
  • [38] AN INTEGRAL TRANSFORM TECHNIQUE FOR SOLVING THE GRAD-SHAFRANOV EQUILIBRIUM EQUATION
    OLSON, RE
    MILEY, GH
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1981, 39 : 489 - 490
  • [39] Symmetries, weak symmetries, and related solutions of the Grad-Shafranov equation
    Cicogna, G.
    Pegoraro, F.
    Ceccherini, F.
    PHYSICS OF PLASMAS, 2010, 17 (10)
  • [40] Grad-Shafranov reconstruction:: an overview
    Sonnerup, Bengt U. Oe.
    Hasegawa, Hiroshi
    Teh, Wai-Leong
    Hau, Lin-Ni
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A9)