Diffusive time evolution of the Grad-Shafranov equation for a toroidal plasma

被引:1
|
作者
Montani, Giovanni [1 ,2 ]
Del Prete, Matteo [2 ]
Carlevaro, Nakia [1 ,3 ]
Cianfrani, Francesco [4 ]
机构
[1] ENEA, Fus & Nucl Safety Dept, Via E Fermi 45, I-00044 Rome, Italy
[2] Sapienza Univ Rome, Phys Dept, Ple Aldo Moro 5, I-00185 Rome, Italy
[3] CREATE Consortium, Via Claudio 21, I-80125 Naples, Italy
[4] Aix Marseille Univ, CNRS, PIIM, UMR7345, 58 Blvd Charles Livon, F-13007 Marseille, France
关键词
plasma confinement; plasma dynamics; CLASSICAL DIFFUSION; RESISTIVE EVOLUTION; TOKAMAK;
D O I
10.1017/S002237782100057X
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe the evolution of a plasma equilibrium having a toroidal topology in the presence of constant electric resistivity. After outlining the main analytical properties of the solution, we illustrate its physical implications by reproducing the essential features of a scenario for the upcoming Italian experiment Divertor Tokamak Test Facility, with a good degree of accuracy. Although we find the resistive diffusion time scale to be of the order of 10(4) s, we observe a macroscopic change in the plasma volume on a time scale of 10(2) s, comparable to the foreseen duration of the plasma discharge by design. In the final part of the work, we compare our self-consistent solution to the more common Solov'ev one, and to a family of nonlinear configurations.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Comment on "Solitonlike solutions of the Grad-Shafranov equation" - Reply
    Lapenta, G
    PHYSICAL REVIEW LETTERS, 2004, 92 (24)
  • [22] Theory of perturbed equilibria for solving the Grad-Shafranov equation
    Zakharov, LE
    Pletzer, A
    PHYSICS OF PLASMAS, 1999, 6 (12) : 4693 - 4704
  • [23] Grad-Shafranov equation in noncircular stationary axisymmetric spacetimes
    Ioka, K
    Sasaki, M
    PHYSICAL REVIEW D, 2003, 67 (12)
  • [24] A Hybridizable Discontinuous Galerkin solver for the Grad-Shafranov equation
    Sanchez-Vizuet, Tonatiuh
    Solano, Manuel E.
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 235 : 120 - 132
  • [25] A semi-analytical solver for the Grad-Shafranov equation
    Ciro, D.
    Caldas, I. L.
    PHYSICS OF PLASMAS, 2014, 21 (11)
  • [26] A family of analytic equilibrium solutions for the Grad-Shafranov equation
    Guazzotto, L.
    Freidberg, J. P.
    PHYSICS OF PLASMAS, 2007, 14 (11)
  • [27] On soliton-like solutions of the Grad-Shafranov equation
    Shukla, PK
    Stenflo, L
    Pokhotelov, OA
    PHYSICA SCRIPTA, 2005, T116 : 135 - 135
  • [28] A mimetic spectral element solver for the Grad-Shafranov equation
    Palha, A.
    Koren, B.
    Felici, F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 316 : 63 - 93
  • [29] A Review of Some Analytical Solutions to the Grad-Shafranov Equation
    Sesnic, Silvestar
    Poljak, Dragan
    Sliskovic, Ena
    2014 22ND INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2014,
  • [30] A new exact solution of the generalized Grad-Shafranov equation
    Solovev, AA
    Soloveva, EA
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 1997, 23 (02): : 277 - 281