Weighted A* Algorithms for Unsupervised Feature Selection with Provable Bounds on Suboptimality

被引:0
作者
Arai, Hiromasa [1 ]
Xu, Ke [1 ]
Maung, Crystal [1 ]
Schweitzer, Haim [1 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
来源
THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2016年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying a small number of features that can represent the data is believed to be NP-hard. Previous approaches exploit algebraic structure and use randomization. We propose an algorithm based on ideas similar to the Weighted A* algorithm in heuristic search. Our experiments show this new algorithm to be more accurate than the current state of the art.
引用
收藏
页码:4194 / 4195
页数:2
相关论文
共 8 条
  • [1] [Anonymous], 1984, Heuristics
  • [2] Arai H., 2016, AAAI 16
  • [3] Arai H, 2015, AAAI CONF ARTIF INTE, P1079
  • [4] Boutsidis C, 2009, PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P968
  • [5] Column Subset Selection Problem is UG-hard
    Civril, A.
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2014, 80 (04) : 849 - 859
  • [6] Dasgupta A, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P230
  • [7] Efficient volume sampling for row/column subset selection
    Deshpande, Amit
    Rademacher, Luis
    [J]. 2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 329 - 338
  • [8] Golub GH., 2012, MATRIX COMPUTATIONS, V3