Classifying forms of simple groups via their invariant polynomials

被引:2
作者
Bermudez, H.
Ruozzi, A.
机构
关键词
Algebraic groups; Galois cohomology; Quadratic forms;
D O I
10.1016/j.jalgebra.2014.08.057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple linear algebraic group over a field F, and V an absolutely irreducible representation of G. We show that under some mild hypotheses there exists an invariant homogeneous polynomial f for the action of G on V defined over F, such that twisted forms of f up to a scalar multiple classify twisted forms of G for which the representation V is defined over F. This result extends the classical case of a quadratic form q and its orthogonal group O(q). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:448 / 463
页数:16
相关论文
共 15 条
[11]  
Merkurjev A.S., 1996, Doc. Math. J. DMV, V1, P229
[12]  
Platonov V., 1994, Algebraic Groups and Number Theory
[13]  
TITS J, 1971, J REINE ANGEW MATH, V247, P196
[14]  
Tits J., 2002, SPRINGER MG MATH
[15]  
Waterhouse W., 1979, Graduate Texts in Mathematics