Classifying forms of simple groups via their invariant polynomials

被引:2
作者
Bermudez, H.
Ruozzi, A.
机构
关键词
Algebraic groups; Galois cohomology; Quadratic forms;
D O I
10.1016/j.jalgebra.2014.08.057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple linear algebraic group over a field F, and V an absolutely irreducible representation of G. We show that under some mild hypotheses there exists an invariant homogeneous polynomial f for the action of G on V defined over F, such that twisted forms of f up to a scalar multiple classify twisted forms of G for which the representation V is defined over F. This result extends the classical case of a quadratic form q and its orthogonal group O(q). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:448 / 463
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 1991, Quadratic and Hermitian Forms over Rings
[2]  
[Anonymous], 1982, Nederl. Akad. Wetensch. Indag. Math.
[3]  
Bermudez H., 2014, T AM MATH S IN PRESS
[4]  
Bourbaki N., 2005, Lie Groups and Lie Algebras
[5]  
Bourbaki N., 2002, Elements of Mathematics, P4, DOI DOI 10.1007/978-3-540-89394-3
[6]   The octic E8 invariant [J].
Cederwall, Martin ;
Palmkvist, Jakob .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[7]  
Garibaldi S., 2013, ARXIV13096611V2
[8]  
Garibaldi S, 2012, MICH MATH J, V61, P227
[9]  
KNUS M.-A., 1998, Amer. Math. Soc. Colloq. Publ., V44
[10]  
MathOverflow, 2012, DET QUADR FORM ITS I