Real-time quantitative PCR: A tool for absolute and relative quantification

被引:129
作者
Harshitha, Ravikumar [1 ]
Arunraj, Duraipandian Rex [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Genet Engn, Kattankulathur, Tamil Nadu, India
关键词
absolute and relative quantification; copy number; fold change; PCR efficiency; quantitative real time PCR; GENE-EXPRESSION;
D O I
10.1002/bmb.21552
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Real-time quantitative PCR is a technique used to monitor the PCR reaction in real time. RT-qPCR is broadly classified into two types based on its purpose: absolute and relative quantification. Absolute quantification is used in a wide array of fields such as microbiology, food technology, and biotechnology to quantify the microbiological load/adulterants in a commodity/copy numbers respectively, whereas Relative quantification is used in the field of genomics and functional transcriptomics to perform gene expression analysis in biological experiments. A laboratory work that covers the basic principles involved in RT-qPCR and data analysis using the manual as well as the software methods are incorporated. The laboratory experiment was designed to provide insights on certain important principles such as primer characteristics, PCR efficiency, and melt curve analysis. This laboratory exercise provides all the significant components of RT-qPCR, which can be useful while performing an experiment in an undergraduate and graduate laboratory.
引用
收藏
页码:800 / 812
页数:13
相关论文
共 22 条
[2]   Integration of amplification efficiency in qPCR analysis allows precise and relative quantification of transcript abundance of genes from large gene families using RNA isolated from difficult tissues [J].
Arunraj, Rex ;
Samuel, Marcus A. .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (03) :147-150
[3]   A simple, accurate and universal method for quantification of PCR [J].
Boulter, Nicky ;
Suarez, Francia Garces ;
Schibeci, Stephen ;
Sunderland, Trevor ;
Tolhurst, Ornella ;
Hunter, Tegan ;
Hodge, George ;
Handelsman, David ;
Simanainen, Ulla ;
Hendriks, Edward ;
Duggan, Karen .
BMC BIOTECHNOLOGY, 2016, 16
[4]   Guidelines for validation of qualitative real-time PCR methods [J].
Broeders, S. ;
Huber, I. ;
Grohmann, L. ;
Berben, G. ;
Taverniers, I. ;
Mazzara, M. ;
Roosens, N. ;
Morisset, D. .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2014, 37 (02) :115-126
[5]   A Real-Time Quantitative PCR Method Specific for Detection and Quantification of the First Commercialized Genome-Edited Plant [J].
Chhalliyil, Pradheep ;
Ilves, Heini ;
Kazakov, Sergei A. ;
Howard, Stephanie J. ;
Johnston, Brian H. ;
Fagan, John .
FOODS, 2020, 9 (09)
[6]   Reference Gene Validation for RT-qPCR, a Note on Different Available Software Packages [J].
De Spiegelaere, Ward ;
Dern-Wieloch, Jutta ;
Weigel, Roswitha ;
Schumacher, Valerie ;
Schorle, Hubert ;
Nettersheim, Daniel ;
Bergmann, Martin ;
Brehm, Ralph ;
Kliesch, Sabine ;
Vandekerckhove, Linos ;
Fink, Cornelia .
PLOS ONE, 2015, 10 (03)
[7]   Real-time PCR in clinical microbiology: Applications for a routine laboratory testing [J].
Espy, MJ ;
Uhl, JR ;
Sloan, LM ;
Buckwalter, SP ;
Jones, MF ;
Vetter, EA ;
Yao, JDC ;
Wengenack, NL ;
Rosenblatt, JE ;
Cockerill, FR ;
Smith, TF .
CLINICAL MICROBIOLOGY REVIEWS, 2006, 19 (01) :165-+
[8]  
Fryer RM, 2002, EXP NEPHROL, V10, P64
[9]   A review of RT-PCR technologies used in veterinary virology and disease control: Sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health [J].
Hoffmann, Bernd ;
Beer, Martin ;
Reid, Scott M. ;
Mertens, Peter ;
Oura, Chris A. L. ;
van Rijn, Piet A. ;
Slomka, Marek J. ;
Banks, Jill ;
Brown, Ian H. ;
Alexander, Dennis J. ;
King, Donald P. .
VETERINARY MICROBIOLOGY, 2009, 139 (1-2) :1-23
[10]  
Jia Y., 2012, Methods in Cell Biology, P55