N-formyl peptide receptor ligation induces Rac-dependent actin reorganization through Gβγ subunits and class Ia phosphoinositide 3-kinases

被引:23
作者
Belisle, B [1 ]
Abo, A [1 ]
机构
[1] Onyx Pharmaceut, Richmond, CA 94806 USA
关键词
D O I
10.1074/jbc.M002743200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The N-formyl peptide receptor is a G protein-coupled transmembrane receptor involved in stimulating a variety of differential responses in neutrophils including chemotaxis, degranulation, superoxide production, transcriptional activation, and actin reorganization. Although it is known that N-formyl-Met-Leu-Phe induces actin reorganization, the sequence of events from the receptor to the actin cytoskeleton is not well characterized. To study the signaling pathway from the N-formyl peptide receptor to the actin cytoskeleton, we developed a model system utilizing microinjection techniques with a nonhematopoietic cell line. An expression vector coding for the N-formyl peptide receptor was microinjected into porcine aortic endothelial cells and stimulated with N-formyl-Met-Leu-Phe to induce actin reorganization and membrane ruffling. The receptor-mediated signal was blocked by pertussis toxin and by a dominant negative Rac-N17, indicating the involvement of G(1)alpha subunit and the small guanosine triphosphatase Rac, respectively. Moreover, G beta gamma subunits and membrane targeted forms of phosphatidylinositol (PI) 3-kinase alpha were sufficient to induce similar actin reorganization, and coexpression of various mutants of PI 3-kinase with the N-formyl peptide receptor identified a link to class Ia PI-3 kinase-mediated actin reorganization.
引用
收藏
页码:26225 / 26232
页数:8
相关论文
共 36 条
[1]   PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia [J].
Abo, A ;
Qu, J ;
Cammarano, MS ;
Dan, CT ;
Fritsch, A ;
Baud, V ;
Belisle, B ;
Minden, A .
EMBO JOURNAL, 1998, 17 (22) :6527-6540
[2]   Phosphoinositide 3-kinase-dependent and -independent activation of the small GTPase Rac2 in human neutrophils [J].
Akasaki, T ;
Koga, H ;
Sumimoto, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (25) :18055-18059
[3]   Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases [J].
Benard, V ;
Bohl, BP ;
Bokoch, GM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (19) :13198-13204
[4]   NEW ROLES FOR G-PROTEIN BETA-GAMMA-DIMERS IN TRANSMEMBRANE SIGNALING [J].
CLAPHAM, DE ;
NEER, EJ .
NATURE, 1993, 365 (6445) :403-406
[5]   Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product [J].
Crespo, P ;
Schuebel, KE ;
Ostrom, AA ;
Gutkind, JS ;
Bustelo, XR .
NATURE, 1997, 385 (6612) :169-172
[6]   Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors [J].
Daub, H ;
Weiss, FU ;
Wallasch, C ;
Ullrich, A .
NATURE, 1996, 379 (6565) :557-560
[7]   Signal transduction - Signals to move cells [J].
Dekker, LV ;
Segal, AW .
SCIENCE, 2000, 287 (5455) :982-+
[8]   Localization of p21-activated kinase 1 (PAK1) to pseudopodia, membrane ruffles, and phagocytic cups in activated human neutrophils [J].
Dharmawardhane, S ;
Brownson, D ;
Lennartz, M ;
Bokoch, GM .
JOURNAL OF LEUKOCYTE BIOLOGY, 1999, 66 (03) :521-527
[9]   Rho GTPases and the actin cytoskeleton [J].
Hall, A .
SCIENCE, 1998, 279 (5350) :509-514
[10]   Role of substrates and products of PI3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav [J].
Han, JW ;
Luby-Phelps, K ;
Das, B ;
Shu, XD ;
Xia, Y ;
Mosteller, RD ;
Krishna, UM ;
Falck, JR ;
White, MA ;
Broek, D .
SCIENCE, 1998, 279 (5350) :558-560