Glucocorticoid impairs mitochondrial quality control in neurons

被引:41
作者
Choi, Gee Euhn [1 ]
Han, Ho Jae [1 ]
机构
[1] Seoul Natl Univ, BK21 Four Future Vet Med Leading Educ & Res Ctr, Res Inst Vet Sci, Dept Vet Physiol,Coll Vet Med, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Glucocorticoid; Mitochondrial quality control (MQC); Mitochondrial dynamics; Mitochondrial trafficking; Mitophagy; Mitochondrial biogenesis; Neurodegenerative disease; PARKINSONS-DISEASE; HUNTINGTONS-DISEASE; ALZHEIMERS-DISEASE; MUTANT HUNTINGTIN; OXIDATIVE STRESS; MOUSE MODEL; GLUTAMATERGIC TRANSMISSION; DAMAGED MITOCHONDRIA; AXONAL MITOCHONDRIA; PREFRONTAL CORTEX;
D O I
10.1016/j.nbd.2021.105301
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurons are particularly vulnerable to mitochondrial dysfunction due to high energy demand and an inability to proliferate. Therefore, dysfunctional mitochondria cause various neuropathologies. Mitochondrial damage induces maintenance pathways to repair or eliminate damaged organelles. This mitochondrial quality control (MQC) system maintains appropriate morphology, localization, and removal/replacement of mitochondria to sustain brain homeostasis and counter progression of neurological disorders. Glucocorticoid release is an essential response to stressors for adaptation; however, it often culminates in maladaptation if neurons are exposed to chronic and severe stress. Long-term exposure to high levels of glucocorticoids induces mitochondrial dysfunction via genomic and nongenomic mechanisms. Glucocorticoids induce abnormal mitochondrial morphology and dysregulate fusion and fission. Moreover, mitochondrial trafficking is arrested by glucocorticoids and dysfunctional mitochondria are subsequently accumulated around the soma. These alterations lead to energy deficiency, particularly for synaptic transmission that requires large amounts of energy. Glucocorticoids also impair mitochondrial clearance by preventing mitophagy of damaged organelle and suppress mitochondrial biogenesis, resulting in the reduced number of healthy mitochondria. Failure to maintain MQC degrades brain function and contributes to neurodegenerative diseases, including Alzheimer?s disease, Parkinson?s disease, and Huntington?s disease. However, mechanisms of glucocorticoid action on the regulation of MQC during chronic stress conditions are not well understood. The present review discusses pathways involved in the impairment of MQC and the clinical significance of high glucocorticoid blood levels for neurodegenerative diseases.
引用
收藏
页数:11
相关论文
共 153 条
  • [1] Abraham Istvan M., 2006, Dose-Response, V4, P38, DOI 10.2203/dose-response.004.01.004.Abraham
  • [2] A randomized controlled trial of prednisone in Alzheimer's disease
    Aisen, PS
    Davis, KL
    Berg, JD
    Schafer, K
    Campbell, K
    Thomas, RG
    Weiner, MF
    Farlow, MR
    Sano, M
    Grundman, M
    Thal, LJ
    [J]. NEUROLOGY, 2000, 54 (03) : 588 - 593
  • [3] AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons
    Amadoro, G.
    Corsetti, V.
    Florenzano, F.
    Atlante, A.
    Ciotti, M. T.
    Mongiardi, M. P.
    Bussani, R.
    Nicolin, V.
    Nori, S. L.
    Campanella, M.
    Calissano, P.
    [J]. NEUROBIOLOGY OF DISEASE, 2014, 62 : 489 - 507
  • [4] Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin
    Ashrafi, Ghazaleh
    Schlehe, Julia S.
    LaVoie, Matthew J.
    Schwarz, Thomas L.
    [J]. JOURNAL OF CELL BIOLOGY, 2014, 206 (05) : 655 - 670
  • [5] Increased Hypothalamic-Pituitary-Adrenal Axis Activity in Huntington's Disease
    Aziz, N. Ahmad
    Pijl, Hanno
    Frolich, Marijke
    van der Graaf, A. W. Maurits
    Roelfsema, Ferdinand
    Roos, Raymund A. C.
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2009, 94 (04) : 1223 - 1228
  • [6] Neurodegenerative processes in Huntington's disease
    Bano, D.
    Zanetti, F.
    Mende, Y.
    Nicotera, P.
    [J]. CELL DEATH & DISEASE, 2011, 2 : e228 - e228
  • [7] Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy
    Barel, Ortal
    Malicdan, May Christine V.
    Ben-Zeev, Bruria
    Kandel, Judith
    Pri-Chen, Hadass
    Stephen, Joshi
    Castro, Ines G.
    Metz, Jeremy
    Atawa, Osama
    Moshkovitz, Sharon
    Ganelin, Eti
    Barshack, Iris
    Polak-Charcon, Sylvie
    Nass, Dvora
    Marek-Yagel, Dina
    Amariglio, Ninette
    Shalva, Nechama
    Vilboux, Thierry
    Ferreira, Carlos
    Pode-Shakked, Ben
    Heimer, Gali
    Hoffmann, Chen
    Yardeni, Tal
    Nissenkorn, Andreea
    Avivi, Camila
    Eyal, Eran
    Kol, Nitzan
    Saar, Efrat Glick
    Wallace, Douglas C.
    Gahl, William A.
    Rechavi, Gideon
    Schrader, Michael
    Eckmann, David M.
    Anikster, Yair
    [J]. BRAIN, 2017, 140 : 568 - 581
  • [8] Neuroinflammation in the pathophysiology of Parkinson's disease:: Evidence from animal models to human in vivo studies with [11C]-PKI1195 PET
    Bartels, Anna L.
    Leenders, Klaus L.
    [J]. MOVEMENT DISORDERS, 2007, 22 (13) : 1852 - 1856
  • [9] FKBP8 recruits LC3A to mediate Parkin-independent mitophagy
    Bhujabal, Zambarlal
    Birgisdottir, Asa B.
    Sjottem, Eva
    Brenne, Hanne B.
    Overvatn, Aud
    Habisov, Sabrina
    Kirkin, Vladimir
    Lamark, Trond
    Johansen, Terje
    [J]. EMBO REPORTS, 2017, 18 (06) : 947 - 961
  • [10] Immune regulation by glucocorticoids
    Cain, Derek W.
    Cidlowski, John A.
    [J]. NATURE REVIEWS IMMUNOLOGY, 2017, 17 (04) : 233 - 247