Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.)

被引:96
|
作者
Jacobsen, S.-E.
Monteros, C.
Corcuera, L. J.
Bravo, L. A.
Christiansen, J. L.
Mujica, A.
机构
[1] Univ Copenhagen, Fac Life Sci, Dept Agr Sci, DK-2630 Taastrup, Denmark
[2] Int Potato Ctr, CIP, Lima 12, Peru
[3] Univ Concepcion, Fac Ciencias Nat & Oceanog, Dept Bot, Concepcion, Chile
[4] Univ Nacl Altiplano, Puno, Peru
关键词
quinoa; freezing resistance; LT50; proline; thermal analysis; soluble sugar; supercooling;
D O I
10.1016/j.eja.2007.01.006
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Quinoa (Chenopodium quinoa Willd.) is traditionally grown in the mountain regions of the Andes where frost is common. However, the physiological mechanisms responsible for the frost resistance observed in quinoa are largely unknown. For this reason, a study on cultivars of quinoa originating from the Andean highlands and from the inter-Andean valleys was performed. Frost tolerance was determined by measuring the average lethal temperature of 50% of the leaf tissues (LT50) by ion leakage, and supercooling activity was assessed by thermal analysis using thermocouples. Quinoa demonstrated supercooling capacity (a mechanism that prevents immediate damage by freezing temperatures) of 5 degrees C. Ice nucleation temperature was always lower than the LT50. This indicates that the main survival mechanism of quinoa to frost is avoidance of ice formation by moderate supercooling. The study revealed that quinoa has a high soluble sugar content, which may cause a lowering of the freezing point and therefore contributing to lower the LT50. It is suggested that the content of proline and soluble sugars, such as sucrose, may serve as indicators of frost tolerance in quinoa breeding material. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:471 / 475
页数:5
相关论文
共 50 条
  • [1] Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.)
    Adolf, Verena Isabelle
    Jacobsen, Sven-Erik
    Shabala, Sergey
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2013, 92 : 43 - 54
  • [2] The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors
    Jacobsen, SE
    Mujica, A
    Jensen, CR
    FOOD REVIEWS INTERNATIONAL, 2003, 19 (1-2) : 99 - 109
  • [3] Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages
    Jacobsen, SE
    Monteros, C
    Christiansen, JL
    Bravo, LA
    Corcuera, LJ
    Mujica, A
    EUROPEAN JOURNAL OF AGRONOMY, 2005, 22 (02) : 131 - 139
  • [4] Ecdysteroids of Quinoa seeds (Chenopodium quinoa Willd.)
    Zhu, N
    Kikuzaki, H
    Vastano, BC
    Nakatani, N
    Karwe, MV
    Rosen, RT
    Ho, CT
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2001, 49 (05) : 2576 - 2578
  • [5] The worldwide potential for quinoa (Chenopodium quinoa Willd.)
    Jacobsen, SE
    FOOD REVIEWS INTERNATIONAL, 2003, 19 (1-2) : 167 - 177
  • [6] Glycaemic properties of quinoa (Chenopodium quinoa Willd.).
    Zevallos, V.
    Grimble, G.
    Herencia, L. I.
    PROCEEDINGS OF THE NUTRITION SOCIETY, 2006, 65 : 60A - 60A
  • [7] Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds
    Konishi, Y
    Hirano, S
    Tsuboi, H
    Wada, M
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2004, 68 (01) : 231 - 234
  • [8] Adaptation of Quinoa (Chenopodium quinoa Willd.) to Australian Environments
    Snowball, Richard
    Dhammu, Harmohinder S.
    D'Antuono, Mario Francesco
    Troldahl, David
    Biggs, Ian
    Thompson, Callen
    Warmington, Mark
    Pearce, Amanda
    Sharma, Darshan L.
    AGRONOMY-BASEL, 2022, 12 (09):
  • [9] Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.)
    Navruz-Varli, Semra
    Sanlier, Nevin
    JOURNAL OF CEREAL SCIENCE, 2016, 69 : 371 - 376
  • [10] Nutritional and biological value of quinoa (Chenopodium quinoa Willd.)
    Vilcacundo, Ruben
    Hernandez-Ledesma, Blanca
    CURRENT OPINION IN FOOD SCIENCE, 2017, 14 : 1 - 6