Glomerular Microscopic Image Segmentation Based on Convolutional Neural Network

被引:0
作者
Han, Xuewei [1 ]
Zhang, Guoshan [1 ]
Wang, Xinbo [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
来源
PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC) | 2019年
关键词
Glomerular segmentation; Convolutional neural network; Deep learning;
D O I
10.23919/chicc.2019.8866064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate glomerular microscopic medical image segmentation is important for renal pathology for obtaining reliable diseases diagnosis. In this study, we construct a pixel-level labeled glomerular microscopic medical image segmentation dataset and improve a classic algorithm, Mask R-CNN, for implementing automatic segmentation of glomerular microscopic medical images. The Improved Mask R-CNN algorithm consists of two parts: in the first part, in order to enhance the accuracy of model training, the anchors in region proposal network are scaled down. In the second part, we increase the number of deconvolution layers in the head mask branch to further improve the glomerular segmentation precision. The experimental results indicate that the algorithm we improve offers higher precision than the original Mask R-CNN algorithm and achieves state-of-the-art segmentation of the glomerular microscopic medical image dataset.
引用
收藏
页码:8588 / 8593
页数:6
相关论文
共 24 条
  • [1] Histograms of oriented gradients for human detection
    Dalal, N
    Triggs, B
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 886 - 893
  • [2] Using deep learning to segment breast and fibroglandular tissue in MRI volumes
    Dalmis, Mehmet Ufuk
    Litjens, Geert
    Holland, Katharina
    Setio, Arnaud
    Mann, Ritse
    Karssemeijer, Nico
    Gubern-Merida, Albert
    [J]. MEDICAL PHYSICS, 2017, 44 (02) : 533 - 546
  • [3] Garcia A, 2017, APPR DIGIT GAME STUD, V5, P1
  • [4] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448
  • [5] He K., 2016, CVPR, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
  • [6] He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
  • [7] Jennette J. C., 2015, HEPTINSTALLS PATHOLO, P11
  • [8] Jennette J. C., 2015, HEPTINSTALLS PATHOLO, P18
  • [9] Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image
    Kato, Tsuyoshi
    Relator, Raissa
    Ngouv, Hayliang
    Hirohashi, Yoshihiro
    Takaki, Osamu
    Kakimoto, Tetsuhiro
    Okada, Kinya
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [10] Microsoft COCO: Common Objects in Context
    Lin, Tsung-Yi
    Maire, Michael
    Belongie, Serge
    Hays, James
    Perona, Pietro
    Ramanan, Deva
    Dollar, Piotr
    Zitnick, C. Lawrence
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 740 - 755